The Electronic Structure of Organometallic Complexes Involving f-Electrons, II
Magnetic Susceptibility and Crystal Field Splitting of Uranium(IV)-tetracyclopentadienide

H.-D. AMBERGER and R. D. FISCHER
Institut für Anorganische Chemie der Universität Erlangen-Nürnberg

B. KANELLAKOPOULOS
Institut für Heiße Chemie, Kernforschungszentrum Karlsruhe

(Z. Naturforsch. 31b, 12-21 [1976]; received July 17, 1975)

Uranium-tetracyclopentadienide, Susceptibility, Model Calculations, Crystal Field Splitting Pattern, Electronic Structure

Some significant features of the low-energy part of the crystal field (= CF) splitting pattern of the organometallic 5f²-system \((9^2\text{-C}_5\text{H}_5)\text{U(IV)} = \text{UCp}_4\), which was proposed by FISCHER and HRISTIDU as early as 1962, has been recently confirmed by BURNS et al. by a detailed single crystal X-ray study. Thus, each of the two discrete \text{UCp}_4-molecules composing the tetragonal unit cell (space group \text{I}4\text{2}m) contains four equivalent, penta-hapto coordinated Cp-ligands, the appropriate rotational arrangements of which give rise to the molecular point symmetry \text{S}_4. In view of these results, the first attempt to interpret the observed temperature dependence of the magnetic susceptibility (= \(\chi_C\)) of the polycrystalline [\text{Rn}]5f²-system in terms of pure \text{Td}-symmetry is now subject to improvement, although the basic conclusions concerning the origin of the isotropic \(^1\text{H}-\text{NMR}\) shifts of \text{UCp}_4 in solution remain essentially unchanged.

1. Introduction

The quasi-tetrahedral molecular structure of the organometallic actinide complex uranium-tetracyclopentadienide, \((9^2\text{-C}_5\text{H}_5)\text{U(IV)} = \text{UCp}_4\), which was proposed by FISCHER and HRISTIDU as early as 1962, has been recently confirmed by BURNS et al. by a detailed single crystal X-ray study. Thus, each of the two discrete \text{UCp}_4-molecules composing the tetragonal unit cell (space group \text{I}4\text{2}m) contains four equivalent, penta-hapto coordinated Cp-ligands, the appropriate rotational arrangements of which give rise to the molecular point symmetry \text{S}_4. In view of these results, the first attempt to interpret the observed temperature dependence of the magnetic susceptibility (= \(\chi_C\)) of the polycrystalline [\text{Rn}]5f²-system in terms of pure \text{Td}-symmetry is now subject to improvement, although the basic conclusions concerning the origin of the isotropic \(^1\text{H}-\text{NMR}\) shifts of \text{UCp}_4 in solution remain essentially unchanged.

As BURNS has pointed out, the occurrence of equal quantities of the two \text{S}_4-enantiomers would crystallographically correspond to one singular species with the molecular symmetry \text{D}_hd.

Requests for reprints should be sent to Dr. H.-D. AMBERGER, Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, D-8520 Erlangen, Egerlandstraße 1, BRD.
pattern which would account for the experimental findings.

In view of these apparent inconsistencies we have undertaken a complete re-examination of the temperature dependence of the Sc of UCp₄, which now covers the entire range from 1.1 up to 298 K, and involves a particularly careful analysis of the low-temperature range between 1.1 and 10 K.

2. Temperature Dependence of the Magnetic Susceptibility

![Graph of temperature dependence of the magnetic susceptibility](image)

Fig. 1. Temperature dependence of the reciprocal magnetic susceptibility χ^{-1} (a) viz. of the squared effective magnetic moment, $\mu_{\text{eff}}^2 = 8\chi T$ (b). The circles correspond to the observed data, the two full-line curves to the best fit of the experimental findings calculated on the basis of Eq. (15).

As shown by curve (a), substantial TIP with $\chi = 0.018 \text{ cm}^3/\text{mole}$ results at very low temperatures up to 11.5 K, thus immediately revealing the existence of a Zeeman-inactive CF-ground state, which can only contribute to the observed Sc via non-diagonal elements ($= $NDE) with respect to the magnetic field operator $\beta H(L + 2S)$ between its eigenfunction and those of low-lying excited states. The corresponding μ_{eff}^2/T-diagram (b) confirms this since a relatively steep and strictly linear section of the curve extending up to 17 K is observed, which by extrapolation towards $T=0$ precisely intersects the coordinate origin**. The absence of any field dependence of the Sc, even at the lowest temperatures studied, is in full accordance with the assumption of a non-magnetic ground state and a TIP exclusively due to NDE's¹⁰.

Above 30 K, at least two and at most three different quasi-linear Curie-Weiss-sections*** are found as the temperature is increased in curve (a)****. This suggests that up to room temperature at least two excited CF-states become thermally populated¹⁰. The alternative graphic representation (b) is consistent with this view in that here, within the temperature ranges of the Curie-Weiss-sections no full linearity is apparent. A quasi-linear curve section above 210 K suggests that even up to room temperature second-order Zeeman-interactions between all of the thermally populated CF-states and at least one further, relatively low-lying but still practically unpopulated CF-state play a non-negligible role.

3. General Crystal Field Considerations

The optical absorption spectra of UCp₄ are known to be noticeably simpler than the corresponding spectra of all complexes of the type $(\eta^5-C_5H_5)_3UX$ (X = Cl, Br, BH₄)¹¹, where the CF-symmetry cannot be higher than Cs, so that it may be deduced that the actual symmetry of the CF of UCp₄ should not deviate drastically from Cs. (Considering only the central ion and the ring normals, UCp₄ belongs to the molecular point group T₄.) Therefore it seems tempting for a CF-

** $\mu_{\text{eff}}^2 = (3 \cdot k/\beta) \chi \cdot T = 8.0 \cdot \chi \cdot T$.

*** $\chi = C/(T-\theta)$.

**** Linear curve sections are primarily found between $T = 27$ and 83 K ($C = 0.565 \text{ (cm}^3 \cdot \text{grrd}/\text{mole)}$, $\theta = -18^\circ$), between 195 and 298 K ($C = 0.90$, $\theta = -100^\circ$) and possibly also between 100 and 177 K ($C = 0.758$, $\theta = -53^\circ$).

* According to 3 viz. 10 kOe.
treatment of UCp₄ to adopt a CF-Hamiltonian of the form:

$$H_{CF} = H_{CF}(T_d) + H_{CF}(S_4)$$ \(1\)

assuming a much stronger contribution from the strictly tetrahedral component $H_{CF}(T_d)$ than from the S_4-component $H_{CF}(S_4)$.

Table I. Correlation of some irreducible representations for the descent of symmetry: $T_d \rightarrow D_{2d} \rightarrow S_4$.

<table>
<thead>
<tr>
<th>T_d</th>
<th>D_{2d}</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1^{11}</td>
<td>A_1^{11}</td>
</tr>
<tr>
<td>E</td>
<td>A_1</td>
<td>A_1^{11}</td>
</tr>
<tr>
<td>T_1</td>
<td>B_1</td>
<td>B_1</td>
</tr>
<tr>
<td>T_2</td>
<td>E_1^{11}</td>
<td>E_1^{11}</td>
</tr>
</tbody>
</table>

A strictly tetrahedral CF would split the ionic ground state $3H_4^*$ of the [Ru]5f²-system U^{4+} into four CF-states. Considering the correlation table (Table I) for the descent from T_d to S_4 (via D_{2d}) symmetry, it appears reasonable to associate the three $v.i.z.$ four closely following CF-states already populated at room temperature with some tetrahedral parent states which are, moreover, almost accidentally degenerate. In Table II, the three particular situations are specified in which, according to the familiar Lea-Leask-Wolf (= LLW)-diagram for the pure Russell-Saunders-state $3H_4$ (see Fig. 2), a crossover of the two (or three) lowest CF-states can take place. However, the experimental μ^2_{eff}-value for room temperature does not match any of the three theoretical μ^2_{eff}-values which would correspond to the three particular values of the ratio B_4^o/B_6^o of the two CF-splitting parameters, if accidental degeneracy is required for the CF-states originating from the ideal Russell-Saunders-term $3H_4$ only. It is therefore reasonable to assume that substantial “higher-order effects” such as J-mixing via the (necessarily strong) CF, orbital reduction effects etc. might be too important to still maintain the LLW-formalism as a useful approximation.

Table II. Specification of zero-energy crossover points in the Lea-Leask-Wolf-diagram of the $3H_4$-manifold (from first-order CF-calculations).

<table>
<thead>
<tr>
<th>Accidental degeneracy of states</th>
<th>B_4^o/B_6^o</th>
<th>μ^2_{eff} (B.M.)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>E:T₂</td>
<td>4.88</td>
<td>7.872</td>
</tr>
<tr>
<td>A₁:T₂</td>
<td>— 1.94</td>
<td>6.000</td>
</tr>
<tr>
<td>A₁:E:T₁</td>
<td>—10.46</td>
<td>8.972</td>
</tr>
</tbody>
</table>

4. Model Calculations for Fictive T_d-Systems

For a further examination whether the above assumption of some rather weakly perturbed and almost (accidentally) degenerate tetrahedral CF-states is compatible with the particular molecular geometry of UCp₄, the ratio B_4^o/B_6^o was determined on the basis of various semi-empirical model concepts. To begin with, the fictitious, strictly tetrahedral f⁻¹-system ($\gamma^6C_6H_6$)M was subjected to model calculations in terms of pure T_d-symmetry which involved essentially the same procedures as outlined in full detail in a recent treatment of the sandwich complex uranocene. The radius of the circles circumscribing the C₆-rings was taken equal to that of the C₆-ring within a real Cp-ligand, and the distance MC was set equal to the known UC-value in UCp₄. The possibility of constructing two strictly tetrahedral but stereochemically non-equivalent conformers, ⁴ Conformation A with C₆H₆-rings pairwise converging with corners.

⁴ Conformation B with C₆H₆-rings pairwise converging with edges.

* The prime signifies the somewhat idealized view adopted by using the Russell-Saunders-symbol $3H_4$.
** The parameters B_4^o are defined by the following cubic Hamiltonian:

$$H_{CF}(T_d) = B_4^o \beta (O_4^o + 5O_4^e) + B_6^o \gamma (O_6^o - 21O_6^e)$$

where the O_m^e-terms are angular momentum operators transforming like the corresponding spherical harmonics and β, γ are operator equivalent factors introduced by Stevens. ¹⁴
which may be transformed into each other by appropriate rotations about the six-fold axes of the cyclic ligands) has required a separate consideration of each conformer.

In view of the current interest in the physical origin and significance of CF-parameter sets playing a dominant role in all parametrized models we have chosen to adopt three different model conceptions for the evaluation of the ratio $B_σ^0/B_σ^0$:

a) the electrostatic “point charge model” (EPC)\(^1\),
b) the “angular overlap model” (AOM)\(^17,18\) and,
c) a simple molecular orbital approach in terms of the Mulliken-Helmholz-Wolfsberg (MHW-MO) method.

Whilst the EPC represents the extreme view of purely electrostatic interactions, the AOM and the MHW-MO are modified versions of an alternative view involving essentially covalent interactions (based on the consideration of overlapping orbitals).

a) According to the EPC the CF-parameters B_n^0 are given by\(^16\):

$$B_n^0 = A_n^0 \langle r^n \rangle = \frac{4\pi}{2n+1} \sum q_j \cdot r \cdot n^{-1} Y_n^0(\Theta_j; \Phi_j) \cdot \langle r^n \rangle$$

(2)

where the $\langle r^n \rangle$'s represent the quantum mechanical expectation values of r^n and $Y_n^0(\Theta_j; \Phi_j)$ results from the insertion of the coordinates Θ_j and Φ_j of the j-th ligand atom into the spherical harmonic $Y_n^0(\Theta_j; \Phi_j)$. The summation j extends over all $j = 1$ to 24 ligator (i.e. ring carbon) atoms which are assumed to have the effective charge $q_j = 4e/24$ ($e =$ electronic charge). Employing Lenander's numerical values for the $\langle r^n \rangle$'s\(^20\) and the UC-distance given by Burns\(^4\), the ratio $B_σ^0/B_σ^0$ for both conformations turns out to be about 16 (with $B_σ^0$ and $B_σ^0 < 0$). This ratio corresponds to an x-value of ---0.90 in the LLW-diagram for the ionic state $^3\text{H}_4^-$, thus suggesting the sequence $T_2: E: T_1: A_1$ for the model system (η^6-C$_6$H$_4$)$_4$U(IV)\(^1+\).

b) Within the framework of the AOM, all parameters B_{nm} can ultimately be formulated as linear combinations of the type\(^18\):

$$B_{nm} = \Sigma K_{\lambda} \cdot e_{\lambda}$$

(3)

where the coefficients K_{λ} depend essentially on the specific geometry of the complex under consideration. The AO-parameters e_{λ} refer to the two-centre-interaction between each of the 24 equivalent ring carbon atoms and the central metal ion ignoring, for the sake of simplicity, any π-interaction within, and between, the cyclic ligands (vide infra). In the present case, where the ring-C-atoms will essentially employ their $2p_{\pi}$-orbitals for covalent bonding we are restricted to $\lambda = \sigma$ and π. By appropriately accounting for the discrete geometries of the two possible T_σ-conformations, the two sets of equations which give the energies of the seven f-orbitals in terms of the B_{nm} and of the e_{λ}-values, respectively\(\ast\), have been evaluated by familiar methods\(^17,18,20\).

The CF-parameters of the two fictive model systems result as follows:

Conformation A: $B_4^0 = -0.278 e_\sigma - 0.138 e_\pi$ \hspace{1cm} $B_6^0 = -0.075 e_\sigma + 0.053 e_\pi$ \hspace{1cm} (4a)

Conformation B: $B_4^0 = -0.293 e_\sigma - 0.105 e_\pi$ \hspace{1cm} $B_6^0 = -0.088 e_\sigma + 0.024 e_\pi$ \hspace{1cm} (4b)

Since the pairs of linear combinations in (4a) and (4b) are so similar, the transition from the fictive f-system to the two-electron system in question has been carried out with Eq. (4a) only.

A tetrahedral CF splits the ionic Russell-Saunders-ground state $^3\text{H}_4^-$ into four symmetry-determined CF-states, the energies of which are specified in (5).

$$E(A_1) = -1.234 B_4^0 - 6.148 B_6^0$$
$$E(E) = -0.176 B_4^0 + 4.919 B_6^0$$
$$E(T_1) = -0.617 B_4^0 + 0.307 B_6^0$$
$$E(T_2) = +1.146 B_4^0 - 1.537 B_6^0$$

(5)

Substituting (4a) into (5) yields the corresponding energies in terms of the AO-parameters e_σ and e_π:

$$E(A_1) = +0.804 e_\sigma - 0.155 e_\pi$$
$$E(E) = -0.320 e_\sigma + 0.285 e_\pi$$
$$E(T_1) = +0.149 e_\sigma + 0.101 e_\pi$$
$$E(T_2) = -0.203 e_\sigma - 0.239 e_\pi$$

(6)

It is convenient to present the information involved in (6) by an AO-diagram in which the specific CF-energies $E(T_1)$ are plotted (in units of e_σ) against the ratio e_π/e_σ\(^21,22\). It is seen that within the range $-1 < e_\pi/e_\sigma < +1$, which seems particularly relevant for chemical arguments\(^24\), only the potential tetrahedral ground states E and T_2 have a chance of approaching each other in the sense of becoming accidentally degenerate (see Fig. 3).

\(\ast\) In some instances the relevant relations found in the literature for π-interactions had to be extended with respect to the axial and cubic set of the f-orbitals\(^23\).
c) Within the framework of the MHW–MO approach the orbital energies $E(\gamma_r)$ of the fictive tetrahedral model complex (Γ^4-system) result from the diagonalisation of three secular determinants of the type:

$$ [H_{ij}(\gamma_r) - G_{ij}(\gamma_r) \cdot E(\gamma_r)] = 0 $$

of the orders 2, 3 and 4, respectively. Table III indicates the number and origins of the various linear combinations of the four C$_6$H$_6$-ligands which have been explicitly considered (only the b_2-combination of the C$_6$H$_6$-ring was ignored). The geometric factors involved in the six different group overlap integrals $G_{ij}(\gamma_r)$ were determined by standard procedures and appropriately combined with the two-centre overlap integrals S_{ij} which were also used in two MO-treatments of uranocene.

The resonance integrals $H_{ij}(\gamma_r)$ were approximated by the expression:

$$ H_{ij}(\gamma_r) = G_{ij}(\gamma_r) \cdot [H_{ij}(5f) + H_{ij}(\gamma_r)] $$

where the Coulomb integrals $H_{ij}(\gamma_r)$ of the π-orbitals of the ligands C$_6$H$_6$ were assumed to be equal to those used in an earlier treatment of the dibenzene chromium system.

The value of the Coulomb integral $H_{ij}(5f)$ of the 5f-orbitals is expected to lie between those of the d-transition elements $[H_{ij}(3d) = -6 \text{ to } -9 \text{ eV}]$ and those of the lanthanides $[H_{ij}(4f) = -11 \text{ to } -24 \text{ eV}]$. Owing to the lack of reliable data for U(IV) we have carried out a series of model calculations by varying the value of $H_{ij}(5f)$ systematically from -8 to -12 eV. In all instances B_4^0 and B_6^0 turned out negative with values of the ratio B_4^0/B_6^0 between $+8$ and $+1$ (with respect to the LLW-diagram this corresponds to x-values between -0.36 and -0.82) and thus admitting, if any, only the accidental degeneracy $E:T_2$ (see Fig. 2 and Table II). Anticipating, on the other hand, an ideal degeneracy $E:T_2$ for the f^2-system, and considering $H_{ij}(5f)$ as unknown, a simple first-order CF-treatment of the isolated 3H_4-manifold yields: $H_{ij}(5f) = -9.73$ eV. If, moreover, a simultaneous diagonalisation of the complete f^2-configuration is carried out with the condition that the sequence:

$$ 0 = E(E) = E(T_2) < E(T_1) < E(A_1) \ldots $$

be verified, the correspondence of results shown in Table IV is obtained.

Table IV. The influence of J-mixing on the ratio B_4^0/B_6^0, assuming ideal E:T_2-degeneracy.

<table>
<thead>
<tr>
<th>Table III. Correspondence of ligand linear combinations and metal f-orbitals in (η^6-C$_6$H$_6$)$_2$M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring</td>
</tr>
<tr>
<td>C_6H$_6$-ring</td>
</tr>
<tr>
<td>Total set of linear combinations resulting for T_d-symmetry</td>
</tr>
<tr>
<td>T_2-symmetry</td>
</tr>
</tbody>
</table>

When these findings are translated back to the f^1-case covered by the MHW–MO-formalism, $H_{ij}(5f)$ turns out to become increasingly more negative with decreasing B_4^0/B_6^0. This trend is essentially due to the increasingly strong influence of J-mixing.

* The spin-orbit coupling matrices and the CF-matrices of SATTEN et al. have been used. The values of the spin-orbit coupling constant and of the Slater parameters adopted in the calculations, were the same as suggested by SATTEN et al. for Cs$_2$ UC$_6$.

Fig. 3. Angular overlap diagram of the fictive tetrahedral complex (η^6-C$_6$H$_6$)$_2$U$^{4+}$ (conformation A).
In view of the rather low first ionisation potential of gaseous \(\text{UCp}_4 \) \((6.5 \pm 0.1 \text{ eV})\), it might be suggested that, as in the case of uranocene\(^1\), electrons in some completely filled ligand orbitals have considerably higher energies than in incompletely filled 5f-metal orbitals. Rather similar cases have been deduced by Jørgensen\(^2\) from the photoelectron spectra of numerous rare earth halide oxides and compounds but this phenomenon seems to be exhibited also by some d-metal acetylacetonates\(^3\).

5. Deviation from Pure Tetrahedral CF-Symmetry

Encouraged by the above results, we have also made an attempt to subject the real \(\text{UCp}_4 \)-system to an appropriate AOM-treatment. Here, however, the large number of free parameters in the complete CF-Hamiltonian for \(S_4 \)-symmetry (9) (in comparison with the five linearly independent equations yielding the CF-parameters within the framework of the AOM) requires several further simplifications.

\[
\hat{H}_{\text{CF}}(S_4) = B_2^0 \tilde{Y}_2^0 + B_3^0 \tilde{Y}_3^0 + B_4^0 (\tilde{Y}_4^4 + \tilde{Y}_4^{-4}) + B_6^0 \tilde{Y}_6^0 + B_3^4 (\tilde{Y}_6^8 + \tilde{Y}_6^{-8}) + i \cdot B_4^4 (\tilde{Y}_6^4 - \tilde{Y}_6^{-4})
\]

(9)

In previous studies of \(S_4 \)-systems the imaginary part of the complex CF-Hamiltonian has quite frequently been simply ignored \(^3^3\)\text{-}\(^3^7\). This kind of truncation of \(H_{\text{CF}}(S_4) \) would formally correspond to a re-ascent from \(S_4 \) to \(D_{2d} \)-CF-symmetry.

It is, however, possible to eliminate one of the \(B_n^m \)-s by a rotation of the initial coordinate system about its z-axis by an angle \(\delta \) given by \(^3^8\):

\[
\tan(\delta) = -\left(\frac{B_{n}^{-m}}{B_{n}^{m}} \right)^{1/2}
\]

(10)

The new set of parameters \(B_n^m \) is thus related to the former one by:

\[
\begin{align*}
B_n^m &= B_n^m \\
B_n^m &= [(B_n^m)^2 + (B_{-n}^m)^2]^{1/2} \quad (m = 0)
\end{align*}
\]

(11)

so that the full parameter set is reduced from virtually seven to six fully independent variables, whilst the point symmetry in question still remains \(S_4 \). Any further reduction of the set (for instance from six to five) is then only possible if for some pairs of parameters fixed ratios \(e.g. \) \(B_6^4/B_6^4 = \text{const.} \) are introduced.

By adopting either the two latter simplifications or by neglecting the full imaginary part of \(H_{\text{CF}}(S_4) \) (of formula (9)), no more than five free variables \(B_n^m \) will survive which, by the formalism of the AOM can again be transformed into linear combinations of the two AO-parameters \(e_\sigma \) and \(e_\pi \) only.

Accounting for the actual spatial positions \(^4\) of the twenty equivalent ring-C-atoms of the \(S_4 \)-molecule \(\text{UCp}_4 \), but applying the truncated CF-Hamiltonian (\(i.e. \) going over to the effective CF-symmetry \(D_{2d} \)) the following set of linear combinations is obtained\(^*\):

\[
\begin{align*}
B_2^0 &= -0.064 e_\sigma - 0.129 e_\pi \\
B_3^0 &= -0.222 e_\sigma - 0.118 e_\pi \\
B_4^0 &= -0.074 e_\sigma + 0.081 e_\pi \\
B_4^4 &= -1.407 e_\sigma - 0.609 e_\pi \\
B_6^4 &= +1.564 e_\sigma - 0.610 e_\pi
\end{align*}
\]

(12)

The first-order energies of the CF-states derived from the \(^3H_2 \)-manifold (classified in terms of \(D_{2d} \)-symmetry) are\(^3^1\):

\[
\begin{align*}
E(\text{A}_1^I) &= 4D_2^0 + 16D_4^0 - 8D_6^0 - \\
&\frac{1}{2} \left[(48D_2^0 - 4D_4^0 + 24D_6^0)^2 + [2] \left[2 \left(\sqrt{70}D_4^0 + 2\sqrt{70}D_6^0 \right) \right]^2 \right]
\end{align*}
\]

(13)

\[
\begin{align*}
E(\text{A}_1^II) &= 4D_2^0 + 16D_4^0 - 8D_6^0 + \\
&\frac{1}{2} \left[(48D_2^0 - 4D_4^0 + 24D_6^0)^2 + [2] \left[2 \left(\sqrt{70}D_4^0 + 2\sqrt{70}D_6^0 \right) \right]^2 \right]
\end{align*}
\]

(14)

The quantities \(D_n^m \) occurring in (13) relate to the \(B_n^m \)-values as follows:

\[
\begin{align*}
D_2^0 &= \alpha B_2^0 \quad D_4^0 = 12 \cdot \beta B_4^0 \\
D_4^4 &= 12 \cdot \beta B_4^4 \quad D_6^4 = 180 \cdot \gamma B_6^4
\end{align*}
\]

(14)

* The expressions presented by KUSE et al.\(^3^9\) differ from those applied in this paper by one reversed phase factor.
The corresponding AO-diagram resulting from the combination of (12) with (13) and (14) is shown in Fig. 4. It is seen from the diagram that the three essential conditions already deduced from the observed temperature dependence of the magnetic Sc of UCp$_4$, namely:

i) a magnetically inactive (i.e. non-degenerate) CF-ground state,

ii) non-vanishing NDE's with respect to the operator $\beta H(L + 2S)$ between the CF-ground state and the first excited state,

iii) sufficiently low energies of the three (or at most four) lowest-lying CF-states to admit an appreciable thermal population at room temperature,

are only verified within the range: $0.33 < e_m/e_a < 0.54$.

The corresponding energetic sequence is:

$E(A_1^2) < E(E_{1}^I) < E(B_2) < E(B_1) < E(E_{II}) < E(A_2) < E(A_1)$.

The general appearance of the AO-diagram of the virtual D$_{2d}$-system shows a close resemblance to the AO-diagram of the T$_d$-model system (Fig. 3) confirming the initial idea of an essentially tetrahedral CF upon which weaker contributions of lower symmetry are superimposed.

Fairly similar AO-diagrams are also obtained if a CF of S$_4$-symmetry is maintained, provided that the ratio B_6^m/B_6^a adopts values between -0.25 and $+0.25$. In fact, numerous studies of rare earth systems involving S$_4$- or C$_3v$-symmetry (i.e. the CF-Hamiltonian contains an imaginary term) have revealed that $B_6^m \approx B_6^a$. However, as a trivial consequence of the descent from D$_{2d}$- to S$_4$-symmetry, the crossover of the former D$_{2d}$-states B_1 and B_2 (which in S$_4$-symmetry both transform like B) will be avoided.

6. Tentative Simulation of the Observed Magnetic Data

As a common result of the various model considerations described in the preceding sections it has been found that the lowest-lying CF-states susceptible to thermal population can always be derived from the CF-states E and T$_2$ of a fictive tetrahedral molecule. This particular feature offers a useful starting point for an attempt to simulate the observed temperature dependence of the Sc of UCp$_4$.

Thus, it is assumed that the energetic order of the four parent tetrahedral CF-states be

$E \approx T_2 < T_1 < A_1 \ldots$

The actual deviation of the CF-Hamiltonian from T$_d$-symmetry is essentially accounted for by admitting a weak additional perturbation in the sense of T$_d$→S$_4$. This is achieved by assuming the energetic order of the CF-states to be the same as in the AO-diagram for D$_{2d}$-symmetry within the range: $0.33 < e_m/e_a < 0.54$ (see Fig. 4). On the other hand, the matrix elements of the magnetic field operator were determined using the unmodified tetrahedral eigenfunctions42 (for an appropriate correlation see Table V).

Table V. List of the eigenfunctions adopted, and of the "optimal" CF-energies obtained, in the simulation of the experimental Sc-data.

<table>
<thead>
<tr>
<th>Rep. (T$_d$)</th>
<th>CF-Eigenfunction</th>
<th>Rep. (D$_{2d}$)</th>
<th>Energy [cm$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$\sqrt{7/24}</td>
<td>4 > - \sqrt{5/12}</td>
<td>0 > +</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{7/24}</td>
<td>-4 >$</td>
<td></td>
</tr>
<tr>
<td>T$_2$</td>
<td>$\sqrt{7/8}</td>
<td>3 > - \sqrt{1/8}</td>
<td>-1 > - \sqrt{7/8}</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{1/2}</td>
<td>2 > - \sqrt{1/2}</td>
<td>-2 >$</td>
</tr>
<tr>
<td>T$_1$</td>
<td>$\sqrt{1/8}</td>
<td>-3 > - \sqrt{7/8}</td>
<td>1 >$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{1/2}</td>
<td>4 > - \sqrt{1/2}</td>
<td>-4 >$</td>
</tr>
<tr>
<td>A$_1$</td>
<td>$\sqrt{5/24}</td>
<td>4 > + \sqrt{7/12}</td>
<td>0 > +</td>
</tr>
</tbody>
</table>

Fig. 4. Angular overlap diagram of UCp$_4$ as obtained by neglecting the imaginary part of Eq. (9). The "tetrahedral" parent states are indicated on the left side of the diagram.
Ignoring, moreover, all contributions from the very high-lying singlet state A_1^{II} (in terms of D_{2d}-symmetry) the paramagnetic Sc is easily formulated by means of van Vleck's fundamental formula\(^{42}\):

$$Q^2 N \sum [(W_i)^{\frac{3}{2}} kT - 2 W_{i,II}^{\text{II}}] \exp \left(-\frac{W_i^{\text{II}}}{kT} \right)$$

$$\chi = \frac{\sum_i \exp \left(-\frac{W_i^{\text{II}}}{kT} \right)}{N}$$ \hspace{1cm} (15)

The quantities W_i^{I} and $W_{i,II}^{\text{II}}$ involve, as usual, the diagonal and non-diagonal matrix elements, respectively, of the magnetic field operator and are readily accessible from the wave functions given in Table V. As $W_0^0 = 0$, and $W_5^0 = W_4^0$, four different W_i^0-values are considered as free parameters. An additional open variable is the quantity Q, which is intended to account for a reduction of all matrix elements by "higher order" effects such as J-mixing via the CF\(^1\), reduction of the angular momentum caused by covalency effects\(^44\) and deviation of the S_4-CF-wave functions from the tetrahedral wave functions. N and k are the Loschmidt and Boltzmann constants, respectively.

It is possible to reproduce the two experimental curves (a) and (b) of Fig. 1 satisfactorily by the five W_i^0-values listed in the right-hand column of Table V and one scaling factor $Q = 0.707$.

In the AO-diagram (Fig. 4) the relative spacing of these CF-energies is best accounted for if $e_a/e_a = 0.50$, so that e_a will formally amount to ca. 2000 cm\(^{-1}\). It is quite remarkable that a good simulation of the experimental findings is achieved by only a single "scaling parameter" Q, although the actual value to be chosen is (as in the uranocene system\(^1\)) surprisingly low.

7. Concluding Remarks

It should be emphasized that the main purpose of the present study concerning the electronic structure of the $5f^2$-system UC\(_4\) is to illuminate the usefulness, and individual limitations, of the simplest model conceptions available, rather than to reproduce the known properties of UC\(_4\) by very extended calculations. Thus, the strikingly successful simulation of the temperature dependence of χ as outlined in the preceding section can by no means serve as a "proof" of the CF-splitting patterns developed on the basis of various simple theoretical approaches. There is, nevertheless, a sufficiently large amount of mutual consistency between the statements deduced from the experimental facts, both directly and via the semi-empirical approaches, that future refinements could hopefully make use of at least some of the present results.

On the other hand, comparing the present treatment of UC\(_4\) with a previous study of the likewise organometallic "uranocene" system (η^8-C\(_8\)H\(_8\))$_2$U(IV)\(^1\), it is seen that only in the UC\(_4\)-case both the purely electrostatic approach (EPC), and the alternative models which take account of covalent interactions (AOM viz. MHW-MO), lead to essentially the same results. Since both electrostatic and covalent interactions will undoubtedly determine the actual CF-splitting pattern (and, of course, the underlying parameters), the treatment of UC\(_4\) suffers from less ambiguity than the study of U(C\(_8\)H\(_8\))$_2$.

Another point of interest is that both treatments tend to favour situations in which the one-electron energy of the unperturbed $5f$-orbitals is assumed to be somewhat lower than the energies of those orbitals of the respective cyclic π-systems which turn out to be most relevant for the formation of the complexes (i.e. the linear combinations transforming as e_1 and e_2 in C\(_5\)- and C\(_6\)-symmetry, respectively). Although this particular energetic order of starting orbitals would be consistent with a number of recent photoelectron spectroscopic results, this feature of the derived electronic structure of the complexes might lead to some controversy in that some completely occupied ligand orbitals would be of higher energy than the partly filled "5f-like" orbitals.

MÜLLER has shown that the first ionisation potential (=I.P.) of numerous complexes of the type CpaLn(III) (Ln = Pr, Ho, Tm, Yb and Lu) are quite distinctly centred around 7.5 eV\(^31\). The absence of any variation of the data which parallel the known redox potentials of the Ln(III)-systems suggests that here ionisation takes always place from a distinct "ligand-like" orbital. Consequently, the observed first I.P. of the complex CpaU(IV)F (7.53 eV) should be assigned to a corresponding mode of ligand ionisation in the CpaLn(III)-systems. Adopting Jørgensen's arguments concerning the intramolecular (ligand) electron repul-
sion in the complexes with crowded η^5-C$_5$H$_5$-ligands, a substantial lowering of the first I. P. is expected and in fact observed when the fluoride ligand is substituted by another η^5-C$_5$H$_5$-ring (I. P. of UCp$_4$ = 6.5 eV)*. Therefore for UCp$_4$ it seems not unreasonable to assume the initially introduced starting condition: $E(5f) < E(e^1, \text{ring})$.

It is finally worth mentioning that the sign of the “optimal” AO-parameters e_σ and e_π turn out negative for U(C$_5$H$_5$)$_2$ but positive for UCp$_4$, whilst the three CF-parameters $B_{\sigma n}$ ($n = 2, 4, 6$) are in both cases negative. The main reason for this sign reversal of the e_σ-values is that the AOM-treatment has been carried out by accounting for no more than two singular variables e_σ and e_π, although the π-interaction within each of the cyclic ligand systems is undoubtedly too large to be simply neglected. Hence, each of the “optimal” $e_\sigma (\lambda = \sigma$ and π)-values is necessarily understood as an appropriate average value over three viz. four individual $e_{\sigma j}^2$-values, where each j label denotes one of the different linear combinations of ligand π-orbitals.

* Quite similarly, the transition from the complex Cp$_2$Yb(III) to the (monomeric) species Cp$_2$Yb(III)Cl corresponds to a substantial increase of the first I. P. (from 7,30 to 8,65 eV1).

For any extension of this work additional information is undoubtedly too large to be simply provided in the near future by low-temperature electronic f-f-absorption spectra in the near infrared and visible regions.

We would like to thank Dr. J. H. Burns for supplying us with his structural data on UCp$_4$ prior to publication. This work was supported at an early stage by the Deutsche Forschungsgemeinschaft. All calculations were carried out at the Computer Centre of the University Erlangen–Nürnberg, and all magnetic measurements at the Kernforschungszentrum Karlsruhe.

4. J. H. Burns, private communication prior to publication.
5. J. H. Burns, J. Amer. Chem. Soc. 95, 3815 [1973].
10. K.-D. Amberger, to be published.