Massenspektren der 1-Dimethylamino-naphthalin-5-sulfonyl-Derivate von Catecholamin-Metaboliten

H. EGGE *, H. OCKENFELS, H. THOMAS ** und F. ZILLIKEN *

Physiologisch-chemisches Institut der Universität Bonn und Abteilung für Biochemie der Universität Ulm

Die Aufnahme der Massenspektren erfolgte mit dem Gerät LKB 9000. Proben von 10—20 µg wurden über ein Glas-Direkteinlaßsystem vor die Ionenquelle gebracht. Temperatur der Ionenquelle 250 °C; Ionisierungsenergie 70 eV; Fallenstrom 60 µA; Beschleuni-

Through the use of 1-dimethylaminonaphthalene-5-sulfonylchloride with primary and secondary amino- or phenolic hydroxy groups, the mass spectra of several derivatives were determined, and discussed.

The mass spectra of 1-dimethylaminonaphthalene-5-sulfonyl derivatives of the phenolic aldehydes 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, vanillin, isovanillin and protocatechualdehyde were determined and discussed.

The mass spectra of 1-dimethylaminonaphthalene-5-sulfonyl derivatives of the phenolic aldehydes 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, vanillin, isovanillin and protocatechualdehyde were determined and discussed.

Methodik

The mass spectra of 1-dimethylaminonaphthalene-5-sulfonyl derivatives of the phenolic aldehydes 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, vanillin, isovanillin and protocatechualdehyde were determined and discussed.

** DANS = Dansyl steht im folgenden für 1-Dimethylamino-naphthalin-5-sulfonyl.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Advancement of Science unter einer Creative Commons Attribution-NoDerivs 3.0 Deutschland Lizenz. Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Namensnennung-Keine Bearbeitung) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.
gungsspannung 3,5 kV; Schlitzweite 0,1/0,2 mm;
Magnetscan ca. 20 Sek. im Bereich m/e 4 — m/e 700.
Die Probentemperatur ist für die jeweilige Substanz
in Tab. 1 angegeben. Die Verbindungen 1—5 sowie 6
und 7 wurden nach bereits beschriebenen Methoden
dargestellt ¹⁸, ⁷.

Tab. 1. Massenspektrometrisch untersuchte DANS-Derivate.

<table>
<thead>
<tr>
<th>Verbindung von</th>
<th>Summenformel</th>
<th>Mol.- Gew.</th>
<th>Proben- temperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4-Hydroxybenzaldehyd</td>
<td>C₁₉H₁₇NO₄S</td>
<td>355,3</td>
<td>70</td>
</tr>
<tr>
<td>2 3-Hydroxybenzaldehyd</td>
<td>C₁₉H₁₇NO₄S</td>
<td>355,3</td>
<td>30</td>
</tr>
<tr>
<td>3 Vanillin</td>
<td>C₂₀H₁₉NO₅S</td>
<td>385,4</td>
<td>45</td>
</tr>
<tr>
<td>4 Isovanillin</td>
<td>C₂₀H₁₉NO₅S</td>
<td>385,4</td>
<td>62</td>
</tr>
<tr>
<td>5 Protocatechu- aldehyd</td>
<td>C₃₁H₂₈NO₇S₂</td>
<td>604,7</td>
<td>105</td>
</tr>
<tr>
<td>6 β-Phenyläthylamin</td>
<td>C₂₀H₂₂N₂O₂S</td>
<td>354,4</td>
<td>55</td>
</tr>
<tr>
<td>7 Piperidin</td>
<td>C₁₇H₂₂N₂O₂S</td>
<td>318,4</td>
<td>35</td>
</tr>
</tbody>
</table>

Ergebnisse und Diskussion

Die MS-Spektren der dansyierten Phenolaldehyde zeichnen sich, wie auch schon an Dansyl-Derivaten
der anderer Substanzklassen gezeigt wurde ¹³—¹⁶, durch
hohe Molekülpeaks aus, die 28 — 66% der Intensität
des Basispeaks ausmachen. Die Isotopenverteilung
des (M + 1)- und besonders des (M + 2)-Peaks ist
charakteristisch für schwefelhaltige Verbindungen.
Der (M + 2)-Peak beträgt bei den ein S-Atom ent-
haltenden Verbindungen 1—4 durchschnittlich 8%,
bei der Didansyl-Verbindung 5 jedoch 13% des
Molekülpeaks. Ein weiteres Charakteristikum der
DANS-Phenolaldehyde ist die bevorzugte Abspal-
tung des Dimethylaminonaphthyl-Fragmentes D, so
daß m/e 170 zum Basispeak wird. Die Spektren der
Vergleichssubstanzen 6 und 7 zeigen jedoch, daß die
Struktur des bevorzugten Fragmentes D von der
zweiten Molekülhälfte beeinflußt werden kann:
Wenn das Restmolekül neben dem Benzolring meh-
Abb. 1. 70 eV-Massenspektren der DANS-Phenolaldehyde 1–5.

...CH₂-Gruppen aufweist wie im Falle der Verb. 6, steigt m/e 171 auf 60% des Basispeaks an. Enthält der Rest keinerlei aromatische Anteile wie beim DANS-Piperidin, so wird m/e 171 analog dem MS-Spektrum des 1-Dimethylamino-naphthalins zum Basispeak (vgl. Tab. 2 und Abb. 1). Das gleiche gilt auch für N,N-Didansyl-putrescin.

H. EGGE, unveröffentlicht.
<table>
<thead>
<tr>
<th>Verbindung</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Relative Intensität</th>
<th>m/e</th>
<th>Relative Intensität</th>
<th>m/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>105</td>
<td>0,1</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>41</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>109</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>113</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>114</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>115</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>117</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>118</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>119</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>121</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>122</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>123</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>102</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>124</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>125</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>130</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>126</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>131</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>105,5</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>132</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>106,5</td>
<td>0,1</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tab. 2
Das Dansyl-Bruchstück \((m/e \ 234)\) tritt bei den Verb. 1 – 6 nur zu 4 – 8\% auf. Beim DANS-Piperidin ist der entsprechende Peak – in Analogie zu \(m/e \ 235\) – bei \(m/e \ 235\) zu beobachten. Bei der \(N\)-Dansyl-Verbindung 6 tritt zusätzlich ein Peak bei \(m/e \ 250\), auf, der dem (DANS-NH\(_2\))-Fragment zuzuordnen ist.

Die weitere Fragmentierung des Dimethylamino-naphthyl-Restes folgt nach Verlust von Methyl, H\(_2\)CN bzw.HCN dem Schema des Naphthalins (API-0410) \(^{23}\) mit allen für kondensierte Aromaten typischen Spaltprodukten:

\[
\text{Tab. 2. 70 eV-Massenspektren der Verbindungen 1—7 (Peaks mit einer relativen Intensität <0,5 wurden mit Ausnahme der doppelt geladenen Bruchstücke nicht berücksichtigt).}
\]

\[
\begin{array}{cccccc}
\hline
\text{Verbindung} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\text{Relative Intensität} & 1 & 1 & 4 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0,5 & 1 & \\
\hline
\end{array}
\]

\[
\text{Tab. 3. Metastabile Bruchstücke } m^* \text{ der Verbindungen 1—7.}
\]

\[
\begin{array}{cccc}
\hline
\text{Verbindung} & m^* \text{ gef.} & \text{Übergänge (m/e)} & m^* \text{ ber.} \\
\hline
4 & 330,5 & 384 \rightarrow 356 & 330,0 \\
2 & 301 & 354 \rightarrow 326 & 300,2 \\
6 & 208 & 263 \rightarrow 234 & 208,2 \\
6 & 195,5 & 354 \rightarrow 263 & 195,4 \\
1-7 & 141,5 & 170 \rightarrow 155 & 141,3 \\
1-7 & 104,5 & 155 \rightarrow 127 & 104,7 \\
3,4 & 100,5 & 151 \rightarrow 123 & 100,2 \\
1-6 & 98 & 170 \rightarrow 129 & 97,9 \\
7 & 96 & 171 \rightarrow 128 & 95,8 \\
1,2 & 71,6 & 121 \rightarrow 93 & 71,5 \\
1-4 & 45,7 & 93 \rightarrow 65 & 45,4 \\
1-4 & 23,5 & 65 \rightarrow 39 & 23,4 \\
\hline
\end{array}
\]

\[
\]

\footnote{\text{E. STENHAGEN, S. ABRAHAMSSON u. F. W. MCCLAFFERTY, Interscience Publ., New York/London/Sidney/Toronto 1969.}}
zuzuordnenden Metastabilen \(m^* = 71.6; 45.7 \) bzw. 23.5 sind z. T. erst bei Übersteuerung des sehr hohen Peaks bei \(m/e 170 \) zu erkennen. Das Fragmentierungsschema des 3-Hydroxy-benzaldehyds (DOW-4804) ist weitgehend mit dem des isomeren Aldehyds identisch. Die DANS-Verbindung 2 weist jedoch im unteren \(m/e \)-Bereich geringe quantitative Unterschiede gegenüber 1 auf. Besonders hervorzuheben ist die in 2 erleichterte Abspaltung von CO: \(m/e 354 \rightarrow m/e 326 \).

Bei der resonanzstabilisierten Verb. 1 konnte die Eliminierung von CO aus dem \((M-1) \)-Ion auch bei Übersteuerung der Spektren nicht nachgewiesen werden. Diese Beobachtung findet ihre Parallele in der starken Differenz zwischen den Fluoreszenzintensitäten der Verb. 1 und 2.

Bei den DANS-Derivaten des Vanillins und des Isovanillins sind alle für die unsubstituierten Phenolaldehyde (MOR-0123; SIK-5049) charakteristischen Fragmenten vorhanden. Von den metastabilen Ionen, die den Übergängen

\[
\begin{align*}
\text{m/e 151} & \rightarrow \text{m/e 123} \\
\text{m/e 93} & \rightarrow \text{m/e 65} \\
\text{m/e 93} & \rightarrow \text{m/e 39}
\end{align*}
\]

entsprechen, sind \(m^* = 45.7 \) und \(m^* = 23.5 \) wie bei Verb. 1 und 2 erst bei Übersteuerung gut zu erkennen; \(m^* = 70.3 \) findet sich auch unter diesen Bedingungen nicht. Das erhöhte Auftreten von \(m/e 95 \) könnte hier auf die Bevorzugung einer zweimalen CO-Abspaltung \((A-56) \) hinweisen. Analog zu 2 wird auch bei Verb. 4, die ebenfalls einen zur Carboxylgruppe meta-ständigen Dansyloxy-Rest aufweist, eine erleichterte CO-Abspaltung beobachtet: \(\text{m/e 354} \rightarrow \text{m/e 356} \). Der zugehörige metastabile Peak \(m^* = 330.5 \) wird ebenfalls erst bei Übersteuerung des Basispeaks erkennbar. Bei 3 läßt sich dieser Übergang nicht nachweisen. Im unteren Massenbereich zeigen die MS-Spektren des Vanillin- und Isovanillin-Derivates keine eindeutigen Unterschiede.

Bei der Didansyl-Verbindung des Protocatechualdehyds trat zusätzlich ein Peak bei \(m/e 371 \) auf, der durch Abspaltung eines Dansyl-Restes zu erwarten ist. Das zum Vergleich angeführte Spektrum des DANS-\(\beta \)-Phenyläthylamins zeigt die für das System typischen Bruchstücke. Im Gegensatz zum freien \(\beta \)-Phenyläthylamin (MOR-0042) findet bei der dansylierten Verb. 6 eine bevorzugte Abspaltung des Benzylrestes (Tropylium-Kation, \(m/e 91 \)) statt mit anschließender Eliminierung des \((\text{CH}_2-\text{NH})^- \)-Fragmentes \((m/e 29) \):

\[
\text{m/e 354} \rightarrow \text{m/e 263} \rightarrow \text{m/e 234}
\]

Beim DANS-Piperidin werden abweichend vom freien Piperidin (API-0618) wegen des fehlenden Protons am N-Atom die stark ungesättigten Fragmente \(m/e 55 \) und 42 in den Serien \(m/e 57; 56; 55 \) bzw. \(m/e 44; 43; 42 \) bevorzugt gebildet.

Die vorliegende Arbeit wurde durch Sachbeihilfen des Bundesforschungsministeriums (*) und der Deutschen Forschungsgemeinschaft (**) unterstützt.