increased significantly when transducing mixtures containing the wild type phage are plated with antiphage serum. The second is that transduction by ts mutants at the permissive temperature continues to be more efficient than that by wild type. Since different adsorption rates of the phages may be ruled out by experiment, one is left with the possibility that wild type and mutant lysates produced under parallel conditions contain different fractions of transducing particles.

Considering the protective function of the capsule, the question remains to be answered how infection of cells which were not artificially decapsulated is possible. Experiments of Warren and Gray11 indicate that streptococci which produce hyaluronic acid also elaborate hyaluronidase. Coexistence of the enzyme and its substrate leads to disappearance of hyaluronic acid on continued incubation. Since cells to be transduced came from the stationary phase of growth, they are likely to possess no pro-

As for the temperature dependence of the process that results in the formation of transducing particles, further work is necessary to find out the underlying mechanism. Among others, the following hypothesis is attractive. As the temperature decreases from 37\textdegree to 26\textdegree, the reproduction and/or maturation of progeny phage is increasingly delayed (see Figs. 2 and 3) in favour of either a genetic interaction between vegetative phage and host genome or some kind of phenotypic mixing, as a result of fragmentation of the bacterial chromosome to pieces of proper size for incorporation into phage heads.

I thank Drs R. M. Cole and A. E. Colón who generously provided bacterial strains and phages and critically read the manuscript. The dependable technical help of Mrs. I. Hoffmann is gratefully acknowledged.

Separation of poliovirus specific RNA structures by analytical gelelectrophoresis

Klaus Koschel

Institut für Virologie der Universität Würzburg

Die analytische Gelelektrophorese an Agarose-Polyacrylamidgelen gestattet eine Auftrennung der poliovirus-spezifischen RNS-Strukturen: Einzelstrang-RNS, doppelsträngige replikative Form (RF) und replikative Intermediatform (RI). Unter den verwendeten Bedingungen werden die RNS-Arten nach ihrer Molekülgroße getrennt. Auch in dieser Trennmethode zeigt sich die Inhomo­genität der mehrsträngigen RI-Struktur.

Three types of virus specific RNA have been found in poliovirus infected cells1—4: a single stranded viral RNA with a molecular weight of \(2 \times 10^6\), a double stranded replicative form (RF) with a molecular weight of \(4 \times 10^6\) and a replicative intermediate form (RI) with a molecular weight of \(4—8 \times 10^6\).

This communication reports about the application of the gel electrophoresis by W. Davies5 for that purpose as it has been described already for the separation of RNA structures from the Q\textbeta-bacteriophage6, Reovirus RNA7 and Influenza virus8. The method proves useful for a qualitative and quantitative analysis of the three types of poliovirus specific RNA. Similar results by Noble et al.9 appeared recently. In their case RI did not enter the 2.25% acrylamide gel used and then would be separated from the two other and smaller viral structures. We also observed this behaviour of RI.

1 D. Baltimore and M. Girard, Proc. nat. Acad. Sci. USA 56, 741 [1966].
3 D. Baltimore, J. molecular Biol. 32, 359 [1968].
5 B. J. Davies, Ann. New York Acad. Sci. 121, 404 [1964].
7 A. R. Bellamy, L. Shapiro, J. T. August, and W. K. Joklik, J. molecular Biol. 29, 1 [1967].
8 M. W. Pons and G. H. Hirst, Virology 35, 182 [1968].
by gelelectrophoresis, it appeared derivable to reduce the gel concentration to permit migration of this structure.

Owing to the relatively high molecular weights of the RNA structures in question the concentration of acrylamide and the degree of polymerization had to be rather low (1% acrylamide and about 0.1% \(N,N'\)-Bismethyleneacrylamide). The resulting very soft polymers were stabilized by the addition of agarose according to Peacock and Dingman\(^\text{10}\).

In order to prevent any interaction between proteins and nucleic acids the gels, the buffer and the samples to be analyzed contained sodium dodecyl sulfate (SDS) and ethylenediaminetetraacetate (EDTA)\(^\text{6,7}\). (For details see legends.) The experimental samples consisted of cytoplasmic extracts of poliovirus infected HeLa-Cells. The virus specific RNA was pulse labelled with \(^{14}\text{C}-\) or \(^{3}\text{H}-\)Uridine in the presence of actinomycin D. Residual cellular RNA synthesis amounts for about 5—\(8\%\) in infected cells under these conditions. According to Zimmerman et al.\(^\text{11}\) this residual cellular RNA sediments drastically slower than the 18 S viral RF and was not pointed out in these experiments. Half of each preparation was treated with pancreatic RNase. Both aliquots were then adjusted to 1% SDS and 0.01 M EDTA. The samples were analyzed by gelelectrophoresis as well as by sucrose gradient centrifugation. Fig. 1 depicts the electropherogram of the untreated (solid line) and RNase treated (broken line) cell extracts. The material without RNase distributed itself in several peaks named A, B and C. After preincubation of the extract with RNase only Peak B remained. Since pancreatic RNase exclusively digests single-stranded RNA the material in peak B was considered to represent the double-stranded RF. This was confirmed by sucrose gradient analysis. As shown in Fig. 2, the RNase treated material sedimented in three peaks. One of them is 18 S RNA (broken line), which is characterized physicochemically by other authors in the literature as RF\(^1\). The other peaks of slower sedimenting RNA, most likely degradation products, could not be detected by electrophoresis because they migrated under the conditions used out of the gel.

\(^{10}\) A. C. Peacock and C. W. Dingman, Biochemistry 7, 668 [1968].

\(^{11}\) E. F. Zimmerman, M. Heeter, and J. E. Darnell, Virology 19, 400 [1963].
Fig. 2. Sucrose gradient centrifugation of extracts from polio infected cells (see text Fig. 1) untreated (○—○) and after treatment with RNase (●—●). The arrows indicate the positions of cellular ribosomal RNA (OD 260 m/μ). Gradients: 15—30% sucrose in SDS-buffer (0.01 m tris-HCl, pH 7.4; 0.1 m NaCl, 0.01 m EDTA; 0.5% SDS). Centrifugation: the gradients were centrifuged for 16 hours at 28 °C and 19000 rpm in a Spinco L 2 ultracentrifuge, rotor SW 25,1. Analysis: 0.55 ml fractions were collected. 0.1 ml of each fraction was precipitated with TCA after addition of serum albumine as described 15. The washed precipitates were counted in the liquid scintillation spectrometer in POPOP/PPO-toluene.

As shown in Fig. 3, the 35 S peak material derived from sucrose gradient centrifugation moved exactly to the position of peak A in electrophoresis. Therefore this peak represents single-stranded viral RNA.

The RNA in peak C (see Fig. 1) was also sensitive to RNase in that it moved together with peak B after RNase treatment of the extracts as indicated by the increase of material moving in position B although the absolute amounts applied for the two gels were equivalent. This resembles the characteristics described for the replicative intermediate form (RI) of poliovirus RNA 1.

In a separate experiment we investigated whether or not material C is actually identical with RI. The pulse labelled viral RNA was isolated from cell extracts by means of cold phenol. From the resulting aqueous phase the single-stranded RNA and the RI were precipitated by 2 m LiCl according to BALTI-

Fig. 3. Gel electrophoresis of extracts from polio infected cells (see text; Fig. 1): full circles ●●●●; single strand RNA derived from the sucrose gradient (see 35-S Fig. 2, fract. 12); open circles ○—○. Time of electrophoresis: 140 min, other conditions were equal to those described in Fig. 2. 20 μl of samples were applied to each gel.

Fig. 4. I: Gelelectrophoresis of 3H-labelled RI as isolated by precipitation in 2 m LiCl (●—●). II. Gelelectrophoresis of a mixture of 3H-labelled RI as above and 14C-labelled RF. The counter was set to register 14C exclusively in one channel (○—○) and both 14C and 3H in the other (●—●●). Electrophoresis was allowed to proceed for 200 min; all other conditions were the same as described in Fig. 1. RI was isolated from extracts after RNase treatment (see Fig. 1). 3H-labelled RI was obtained in the following way: 3.5 x 10^8 HeLa S 3-cells (see Fig. 1) were pulse labelled for 2.5 min at 225 min after infection with 3H-Uridine (0.25 mC with a spec. act. of 6700 mC/mmole). Cytoplasmic extracts were prepared according to BALTIMORE 13. The extract was centrifuged for 30 min at 39000 rpm (Spinco L 2, rotor SW 39), the pellet was resuspended in 3 ml of buffer (0.15 m NaCl, 5 mm tris-HCl, pH 7.5) and SDS was added to 0.1%. The solution was extracted at 4°C with buffer-saturated phenol. After residual phenol was removed from the aqueous phase, single-strand RNA and RI were precipitated by 2 m LiCl as described by BALTIMORE and GIRARD 1. The pellet obtained after centrifugation was resuspended in the buffer described above (1% SDS) and used for electrophoresis. When 3H-RI was run alone in the gel 20 μl of the sample were used. When running the mixture (Fig. 4, II) 10 μl each of RF 14C and 3H (RI + single-strand-RNA) were applied to the gel. At the conditions used, the single-stranded RNA Peak A migrated out of the gel: Fig. 4, therefore, only shows the first 30 fractions collected.

MORE and Girard, while the double-stranded RF remained in solution. The resulting mixture of single-stranded viral RNA and RI was then analyzed by gelelectrophoresis (Fig. 4, I). Under the conditions chosen the material of peak A (single-stranded RNA) moved out of the gel. The RI migrated slowly to give an irregular profile at a position corresponding to that of material C of the cell extracts (see Fig. 1). In order to demonstrate that the 18 S RF was not part of this material an artificial mixture of 3H-labelled RI and 14C-labelled RF was investigated by means of gelelectrophoresis.

To distinguish the two isotopes in the resulting fractions the liquid scintillation counter was set to register exclusively 14C in one channel and both 14C and 3H in the other. It is obvious that the 14C-labelled RF (peak B) moves ahead of the majority of 3H-labelled RI (peak C) and thus was not identical with material C as contained in cell extracts.

Note in proof: After this paper had been submitted for publication similar observations were published in a very interesting article by M. Girard and Louise Marty, Bull. Soc. Chim. biol. 51, 31 [1969].

The RI complex proved inhomogenous in electrophoretic mobility as well as in its sedimentation behaviour. This is to be expected on theoretical grounds since the molecular weights of RI vary between $4 - 8 \times 10^6$. The sedimentation constants were found to range between 70 - 18 S. The technique of gelelectrophoresis as applied here separates structures mainly according to molecular size.

The RI structures contained in the cell extracts and prepared as described in this communication were predominantly of the smaller variety because the differences in molecular weights between RI (peak C) and RF (peak B) were minor and thus the two structures were not fully separated by means of gelelectrophoresis.

The separation was, however, sufficient to distinguish between them and to assess their relative amounts.

I thank Prof. Dr. E. Wecker for his support and discussions and Miss A. Pomp for her excellent technical assistance. This work was partially supported by the Deutsche Forschungsgemeinschaft and the Stiftung Volkswagenwerk.