Generalised Mean-square Amplitudes of Vibration and Coriolis Coupling Coefficients for C$_3$H$_6$ and C$_3$D$_6$

K. Venkateswarlu and P. Bhambal

Department of Physics, Kerala University, Alwaye-4, India

Generalised vibrational mean-square amplitudes for cyclopropane and cyclopropane-d$_6$ are calculated using spectroscopic data, and the values at 300 °K are reported. A complete set of the Coriolis coupling coefficients for these molecules has been evaluated.

These molecules have been subjected to spectroscopic investigations previously. Günthard, Lord and McCubbin have given the potential constants for these molecules along with the approximate zeta values for the E' x E' species. Cyvin has worked out both the force constants and vibrational parallel mean-square amplitudes for these molecules. But no attempt has been made so far to obtain the generalised mean square amplitudes and a complete set of the zeta values for cyclopropane and cyclopropane-d$_6$. Hence both these aspects have been taken up in this investigation. Fig. 1 shows the generalised mean square amplitudes for these molecules along with the approximate zeta values and the method of their evaluation have been put forward by Morino and Hirota.

The Σ values, required in the calculation of generalised mean-square amplitudes are obtained by Cyvin's secular equation method. Expressions have been derived for the generalised mean-square amplitudes of different atom pairs. Starting from the S vectors, the B matrix is formed and the A-matrix which is the basis for the calculation of generalised mean square amplitudes is obtained by the matrix relation

$$A = M^{-1} B' G^{-1}$$

where M^{-1} is the matrix containing the reciprocal masses of the atoms and G^{-1} is the inverse kinetic energy matrix. The generalised meansquare amplitudes may be obtained in terms of the Σ matrix according to

$$\langle (\tilde{\xi}_i - \tilde{\xi}_j) (\tilde{\eta}_j - \tilde{\eta}_j) \rangle = \tilde{A}_{ij} \Sigma A_{ij}$$

where $\tilde{\xi}_i, \eta_j = x, y$ or z and ij refer to an arbitrary atom pair.

Coriolis coupling coefficients

The molecules under investigation belong to the D$_3$h point group and have $3 A_1' + A_2' + 4 E + A_1'' + 2 A_2'' + 3 E''$ vibrations. According to Jahn’s rule, two vibrational states will couple through a Coriolis interaction if the direct product of two vibrational states contains a rotational species.

For molecules in the D$_3$h point group vibrations under the E'' species possess rotation about the X and Y axes and the vibrations under the A$_2'$ species possess rotation about the Z-axis. Hence the following types of interactions among the vibrational

species produce non-vanishing Coriolis coupling coefficients.

(1) \(A'_x \times A'_x \); (2) \(A''_x \times A''_x \); (3) \(E' \times E' \)
(4) \(E'' \times E'' \); (5) \(A'_x \times E'' \); (6) \(A''_x \times E'' \)
(7) \(A'_x \times E' \); (8) \(A''_x \times E' \) and (9) \(E' \times E'' \)

where the first four types possess rotation about the Z axis and the next five about the X and Y axes.

The \(\xi^x \) \((x = x, y, z)\) are calculated using the following matrix relation,

where \(\xi = \tilde{L} C_a L \)

\[\tilde{L} \in \mathbb{R}^{3 \times 3} \]

In the above relations \(L \) is the normal coordinate transformation matrix and \(C_a \) is a matrix introduced by MEAL and POLO, the elements of which may be obtained by the well known vector method first suggested by them. Elements of the \(F \) matrices obtained from the general valence force field are used to get the \(L \) matrix elements.

Results and Discussion

To get the solution of the secular equation, it is assumed that the \(\Sigma \) elements contain all the possible interaction mean-square amplitudes also. Table I contains the expressions for generalised mean-square amplitudes for the different bonded and nonbonded distances in the molecule. The numerical values for the generalised mean-square amplitudes and the mean cross products are given in Table II. Table II shows a comparison between the mean amplitude values obtained in this investigation and from the electron diffraction data. From Table II it can be seen that, in general, the out of plane perpendicular mean amplitudes have large values which implies that the corresponding force is rather small. Again for the atom pairs 4...6 and 7...4 we have larger mean amplitudes for the smaller distance. The 5...4 atom pair has nearly the same mean amplitude as for 7...4 though the distance is consider-

<table>
<thead>
<tr>
<th>M. S. A. Quantity Atom pair.</th>
<th>(\langle (Ax)^2 \rangle)</th>
<th>(\langle (Ay)^2 \rangle)</th>
<th>(\langle (Az)^2 \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1 - C_2)</td>
<td>0.002241</td>
<td>0.001869</td>
<td>0.000697</td>
</tr>
<tr>
<td>(C_1 - H_4)</td>
<td>0.006059</td>
<td>0.014383</td>
<td>0.020093</td>
</tr>
<tr>
<td>(C_1 - H_6)</td>
<td>0.011630</td>
<td>0.010727</td>
<td>0.016380</td>
</tr>
<tr>
<td>(H_5 ... H_6)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>(H_7 ... H_6)</td>
<td>0.012583</td>
<td>0.022357</td>
<td>0.024142</td>
</tr>
</tbody>
</table>

Table I. Expressions for Generalised mean square amplitudes of vibration of \(\text{CH}_4 \) and \(\text{CD}_4 \). \(\psi_1, \psi_2; \psi_1', \psi_2'; \psi_1''; \psi_2''; \psi_3; \psi_3' \) and \(\eta_1, \eta_2 \) are the angles made by \((Ax) \), \((Ay) \) and \((Az) \) of bond 1...4 with positive direction X and Y axes, \(\psi_3; \psi_3' \) \((=90^\circ) \) with positive direction of the Z axis. \(\psi_1, \psi_2, \psi_3 \); \(\psi_1', \psi_2', \psi_3' \); \(\eta_1, \eta_2 \) \((=90^\circ) \) are the angles made by \((Ax), (Ay) \) and \((Az) \) of bond 1...6 with positive directions of X, Y and Z axes respectively. \(\psi_1''; \psi_2'' \) are the angles made by \((Ax) \) of bond 7...4 with negative X axis and positive Z axis respectively. \(\psi_1''' \) and \(\psi_2''' \) are the angles made by \((Ax) \) of bond 7...4 with positive X and Z axes respectively.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>M. S. A. Quantity Atom Pair</th>
<th>([A^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_4)</td>
<td>(C_1 - C_2) (1.510)*</td>
<td>0.002241</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>(C_1 - H_4) (1.089)*</td>
<td>0.006059</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>(C_1 - H_6) (2.234)*</td>
<td>0.011630</td>
</tr>
<tr>
<td>(\text{CD}_4)</td>
<td>(C_1 - D_4) (1.089)*</td>
<td>0.004400</td>
</tr>
<tr>
<td>(\text{CD}_4)</td>
<td>(C_1 - D_6) (2.234)*</td>
<td>0.009149</td>
</tr>
<tr>
<td>(\text{CD}_4)</td>
<td>(D_1 - D_4) (1.089)*</td>
<td>0.021833</td>
</tr>
<tr>
<td>(\text{CD}_4)</td>
<td>(D_1 - D_6) (2.234)*</td>
<td>0.022813</td>
</tr>
</tbody>
</table>

Table II. Generalised mean square amplitudes of vibration (\(A^2 \)). * distances of the corresponding bonds in Å.
ably smaller which shows that the nonbonded force between 7 and 4 is comparable to that between 5 and 4.

From Table III, it can be seen that the values obtained by spectroscopic method are in general agreement with those of electron diffraction studies.

Table III. Comparison of the mean amplitudes of vibration by Spectroscopic and Electron diffraction methods.

<table>
<thead>
<tr>
<th>Species</th>
<th>Atom pair</th>
<th>Mean Amplitudes of vibration [Å]</th>
<th>Spectroscopic</th>
<th>Electron diffraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1' \times A_2')</td>
<td>(\zeta_{14})</td>
<td>0.5341</td>
<td>0.4854</td>
<td>(\zeta_{12a,12b})</td>
</tr>
<tr>
<td>(A_1'' \times A_2'')</td>
<td>(\zeta_{9,10})</td>
<td>-0.5100</td>
<td>-0.1806</td>
<td>-0.0046</td>
</tr>
<tr>
<td>(E' \times E')</td>
<td>(\zeta_{6a,7b})</td>
<td>0.3884</td>
<td>-0.4615</td>
<td>(\zeta_{13a,14})</td>
</tr>
<tr>
<td>(A_1' \times E'')</td>
<td>(\zeta_{12b,1})</td>
<td>-0.0187</td>
<td>-0.2448</td>
<td>(\zeta_{14a,14b})</td>
</tr>
<tr>
<td>(A_2' \times E'')</td>
<td>(\zeta_{12b,1})</td>
<td>-0.1505</td>
<td>-0.3372</td>
<td>(\zeta_{14a,14b})</td>
</tr>
<tr>
<td>(A_2'' \times E'')</td>
<td>(\zeta_{13b,1})</td>
<td>-0.0187</td>
<td>-0.2448</td>
<td>(\zeta_{14a,14b})</td>
</tr>
<tr>
<td>(E'' \times E')</td>
<td>(\zeta_{13b,1})</td>
<td>0.3884</td>
<td>-0.4615</td>
<td>(\zeta_{13a,14})</td>
</tr>
</tbody>
</table>

Table IV. Coriolis coupling constants.
though some differences are noted for the non-bonded mean amplitudes.

The ζ values obtained are given in Table IV.

The individual ζ value for a given vibration depends on the masses of the atoms, the geometry of the molecule, and the vibrational potential function. However, several authors $^{7-10}$ have shown that for harmonic oscillations the sum of the ζ values of the vibrations in a given degenerate symmetry species is independent of the force system chosen to represent the molecule. Several useful relations among the zetas have already been worked out $^{6-10}$. The following sum rules are applicable to these molecules.

For the E' x E' coupling

$$\zeta_{12}^a + \zeta_{13}^a + \zeta_{14}^a = -1.$$

For the E'' x E'' coupling

$$\zeta_{12}^b + \zeta_{13}^b + \zeta_{14}^b = -1 + \frac{I_A}{2I_B}.$$

For the A_1' x A_2' coupling

$$(\zeta_{14}^a)^2 + (\zeta_{24}^a)^2 + (\zeta_{34}^a)^2 = 1.$$

For the A_1'' x A_2'' coupling

$$(\zeta_{5,10}^a)^2 + (\zeta_{5,11}^a)^2 = 1.$$

For A_2' x E'',

$$\sum (\zeta_{i,j}^a)^2 = \sum (\zeta_{i,j}^b)^2$$

$$(i = 12 a, 12 b, 13 a, 13 b, 14 a, 14 b)$$

$$\sum (\zeta_{i,j}^a)^2 + \sum (\zeta_{i,j}^b)^2 = 1$$

$$i = 12 a \ldots 14 b.$$

For A_1'' x E',

$$\sum (\zeta_{i,j}^a)^2 = \sum (\zeta_{i,j}^b)^2;$$

$$(i = 5 a, 5 b, 6 a, 6 b, 7 a, 7 b, 8 a, 8 b),$$

$$\sum (\zeta_{i,j}^a)^2 + \sum (\zeta_{i,j}^b)^2 = 1 ,$$

$$i = 5 a \ldots 8 b.$$

The ζ values obtained here satisfy these sum rules quite well.

ζ^a values are not given in Table IV because $\zeta_{1,ja}^a = \zeta_{1,jb}^a$ and $\zeta_{1,ja}^b = -\zeta_{1,jb}^b$ for A_1' x E'', A_2' x E', A_1'' x E' and A_2'' x E' couplings. For E' x E' coupling

$$\zeta_{ia,ja}^a = -\zeta_{ib,ja}^a = -\zeta_{ia,ja}^b = -\zeta_{ib,ja}^b$$

and

$$\zeta_{ia,ja}^a = \zeta_{ib,ja}^a = \zeta_{ia,ja}^b = \zeta_{ib,ja}^b.$$

One of the authors (P. B.) wishes to thank the Council of Scientific and Industrial Research, Government of India, for the award of a Junior Research Fellowship.

7 MECKE, R., Z. Physik 81, 313 [1933].
8 E. TELLER, Hand- und Jahrbuch der chem. Physik IX, 2, 125 [1934].
9 D. M. DENNISON and M. JOHNSON, Physic. Rev. 47, 93, 868 [1935].