Explanation of the g-factors and Hyperfine Structure Constants of Co$^{2+}$ in Tetragonal K$_2$ZnF$_4$

Wen-Chen Zheng and Shao-Yi Wu

Department of Material Science, Sichuan University, Chengdu 610064, P.R. China
International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, P.R. China

Reprint requests to W.-C. Z.; e-mail: zhengwenchen@netease.com

Z. Naturforsch. 55a, 539–544 (2000); received January 19, 2000

The formulas of the g-factors g_i, g_j, and the hyperfine structure constants A_i, A_j for 3d7 ions in tetragonal octahedral crystals are established from a cluster approach. Differing from previous formulas, in these formulas the role of configuration interaction (CI) and covalency (CO)-effects is considered, and the parameters related to both effects are obtained from the optical spectra and the structural parameters of the studied crystal. From these formulas, the EPR parameters g_i and A_i for K$_2$ZnF$_4$:Co$^{2+}$ are calculated. The results show good agreement with the observed values. The contributions to the EPR parameters g_i and A_i from the CI and CO effects, and the relationship between the sign of Δg_i and the tetragonal distortion (elongated or compressed) of the ligand octahedron are discussed.

1. Introduction

The crystal structure of K$_2$ZnF$_4$ is isomorphous with that of K$_2$NiF$_4$ (space group D$_{4h}^5$). This structure is of considerable current interest because it is believed to be the relevant structure for the presently most frequently studied superconducting phase in high T_c oxide superconductors. Many studies for the optical and paramagnetic properties of 3dn ion in K$_2$ZnF$_4$ crystal were made [1–3]. Among them, the g factors g_i, g_j, and the hyperfine structure constants A_i, A_j for Co$^{2+}$ in K$_2$ZnF$_4$ were measured from EPR experiments decades ago [3], but until now no theoretical explanations have been made for them. The reason may be the lack of an effective calculation method for the EPR parameters of the 3d7 ion in tetragonal octahedral crystals. Abragam and Pryce [4] established the second-order perturbation formulas of g_i and A_i for 3d7 ions in axial (tetragonal and trigonal) symmetry. Although these formulas are often quoted and applied in many works [5–8], there are three problems in them: (i) The configuration interaction (CI) due to the admixture of ground state with the excited states is considered in these formulas, but the covalency (CO) effect due to the admixture between the d electrons of the central 3d7 ion and the p electrons of ligands is neglected. (ii) There are several adjustable parameters. (iii) For Co$^{2+}$ (3d7) in the elongated ligand octahedron the assumption Δg_i ($= g_i - g_j$) < 0, is not correct. So, these formulas cannot yield reasonable results of g_i and A_i for 3d7 ions in crystals. On the other hand, by considering CO effect, Tinkham [9] established first-order and Robbroeck et al. [10] developed second-order perturbation formulas of g_i and A_i for 3d7 ions in rhombic (also including tetragonal) symmetry. However, in these formulas the CI effect is not considered, and the treatment of the contribution of low symmetry field is oversimplified. Even so, there still are four adjustable parameters in these formulas. So, the EPR parameters g_i and A_i for the 3d7 ion in tetragonal symmetry cannot be reasonably and quantitatively explained by using these formulas.

In order to overcome the above difficulties, in this paper we present a cluster approach to the calculation formulas of g_i and A_i for 3d7 ions in tetragonal octahedral crystals. In these formulas, the role of CI and CO effects is considered (note: because of the large spin-orbit coupling coefficient of the Co$^{2+}$ ion, the role of the Jahn-Teller effect is not important and should be neglected for Co$^{2+}$ in octahedra [11–13], as made in many previous papers [4–10]). The parameters related to both effects can be obtained from the optical spectra and the structural parameters of the studied crystals. From these formulas the EPR parameters g_i, g_j, A_i, and A_j for Co$^{2+}$ in tetragonal K$_2$ZnF$_4$ crystal are calculated. The results show good agreement with the observed values. The role of CI and CO effects and the relationship between the sign of Δg_i and the tetragonal distortion (elongated or compressed) of the ligand octahedron are discussed.
2. Calculation Method

For 3d\(7\) (or 3d\(n\)) ions in crystals, considering the mixture of d electrons of the 3d\(7\) ion and p electrons of ligands via the CO effect, one should apply a cluster approach and take the LCAO molecular orbital [14, 15],

\[|\gamma\rangle = N_{\gamma}^{1/2} (|d_{\gamma}\rangle - \lambda_{\gamma} |p_{\gamma}\rangle) \]

as one-electron basis function, where \(\gamma = t_2g\) or \(e_g\) denotes the irreducible representation of the O\(\textsubscript{h}\) group, \(|d_{\gamma}\rangle\) is the d orbital of 3d\(7\) ions and \(|p_{\gamma}\rangle\) is the p orbital of ligands. \(N_{\gamma}\) is the normalization factor and \(\lambda_{\gamma}\) is the orbital mixing coefficient. From the one-electron basis function, the spin-orbit coupling operator \(H_{\text{SO}} = H_{\text{SO}}(d) + H_{\text{SO}}(p)\), the orbital momentum \(L\) [16] and the hyperfine interaction operator \(H_{\text{hf}}\) [17], we have the spin-orbit coupling coefficients \(\zeta, \zeta'\), the orbital reduction factors \(k, k'\) and the dipolar hyperfine parameters \(P, P'\) for 3d\(7\) octahedral clusters as follows [14, 15]

\[\zeta = N_t (\zeta_0 + \lambda_7^2 \zeta_p^0/2), \quad \zeta' = (N_t N_e)^{1/2} (\zeta_0 - \lambda_7 \zeta_p^0/2), \]

\[k = N_t (1 + \lambda_7^2/2), \quad k' = (N_t N_e)^{1/2} (1 - \lambda_7 \zeta_p/2), \]

\[P = N_t P_0, \quad P' = (N_t N_e)^{1/2} P_0, \]

where \(\zeta_0\) and \(\zeta_p^0\) are, respectively, the spin-orbit coupling coefficient of d electrons of the free 3d\(7\) ion and that of p electrons of the free ligand ion. \(P_0 = g_e g_n \beta_e \beta_n \langle r^{-5} \rangle\) is the dipolar hyperfine parameter of the free 3d\(7\) ion [17].

The ground state \(^{4}\text{F}\) of the 3d\(7\) ion is split by the octahedral field, and an orbital triplet \(^{4}\text{T}_1\) lies lowest, which further splits into \(^{4}\text{E}\) and \(^{4}\text{A}_2\) states under the effect of tetragonal field. The Hamiltonian for the system can be expressed as

\[H = H_0 + H', \]

\[H_0 = H_{\text{Coul}} + V_{c}^{r} (D_{q1}, D_{s}, D_{t}), \]

\[H' = H_{z} (k, k', \alpha, \alpha') + H_{\text{SO}} (\zeta, \zeta') + V^{b}_{c} (D_{q1}, D_{s}, D_{t}) + H_{\text{hf}} (P, P'), \]

where \(H_{\text{Coul}}\) is the Coulomb repulsion interaction. \(V_{c}^{r} (D_{q1}, D_{s}, D_{t})\) and \(V^{b}_{c} (D_{q1}, D_{s}, D_{t})\) are, respectively, the diagonal and off-diagonal parts of the crystal-field. \(D_{q1}\) is the cubic crystal-field parameter, and \(D_{s}\) and \(D_{t}\) are the tetragonal ones. \(H_{z}\) is the Zeeman term with the effective Lande factors \(\alpha\) and \(\alpha'\) in the axial and perpendicular directions. By use of the perturbation method, the second-order perturbation formulas of \(g_{||}\) and \(A_{||}\) of the lowest Kramers doublet \(\pm 1/2\) for the 3d\(7\) ion in tetragonal symmetry can be expressed as

\[g_{||} = 2 + \frac{4 (k \alpha + 2) \left[\frac{3}{x^2} - \frac{4}{(x + 2)^2} \right] + 2 \left[\frac{9}{x^2} - \frac{4}{(x + 2)^2} \right] v_1 - 2 \left(\frac{\alpha}{\alpha'} \right) \left[\frac{3}{x} - \frac{4}{x + 2} \right] v_3}{\left(\frac{\alpha}{\alpha'} \right)^2 + \frac{6}{x^2} + \frac{8}{(x + 2)^2}}, \]

\[g_{\perp} = 4 \left(\frac{\alpha}{\alpha'} \right)^2 + \frac{2 k \alpha + 12}{x + 2} \left(\frac{\alpha}{\alpha'} \right)^2 v_4 + \frac{8}{(x + 2)^2} v_5 + \frac{12}{x + 2} v_6 - \left(\frac{\alpha}{\alpha'} \right) \frac{4}{(x + 2)} v_7, \]

\[A_{||} = P \left(- \kappa / 2 \right) \left[2 + \frac{8 \left[\frac{3}{x^2} - \frac{4}{(x + 2)^2} \right]}{\left(\frac{\alpha}{\alpha'} \right)^2 + \frac{6}{x^2} + \frac{8}{(x + 2)^2}} \right] \right] + 4 k \alpha \left[\frac{3}{x^2} - \frac{4}{(x + 2)^2} \right] v_3 \]

\[+ P' \left[\frac{2}{x^2} - \frac{4}{(x + 2)^2} \right] W_{X} + \left(\frac{\alpha}{\alpha'} \right)^2 W_{Z} - 4 \left(\frac{\alpha}{\alpha'} \right) \left[\frac{3}{x} - \frac{4}{x + 2} \right] W_{XZ} \]

\[\left(\frac{\alpha}{\alpha'} \right)^2 + \frac{6}{x^2} + \frac{8}{(x + 2)^2} \right] \right]. \]
\[
A_1 = p \left(-2 \kappa \left(\alpha' \right)^2 + \frac{12}{x(x+2)} \frac{\alpha'}{x} + 8k' \frac{\alpha'}{x+2} \right) \right] + p'' \left[-\frac{12}{x(x+2)} W_x - \frac{\alpha'}{x} W_x - \frac{32}{(x+2)^2} W_{xy} + \frac{4}{(x+2)} W_{xz} \right].
\]

where \(\kappa \) is the core polarization constant. \(x \) is determined from the energy separation \(\Delta = E[4T_1(F)] - E[4T_2(F)] \) by using the expression [4]

\[
\Delta = \frac{\alpha' \alpha'^2}{3 \alpha} \left[\frac{3}{x} + 4 \right] + \frac{\alpha}{x+2} (x+3).
\]

The \(\nu_i \) are defined as

\[
\begin{align*}
\nu_1 &= \frac{k' \alpha' \nu_f}{3} \left(\frac{15 f_1^2 + 2 q_1^2}{2 E_{1X} - E_{2X}} \right), \\
\nu_3 &= \frac{k' \alpha' \nu_f}{3} \left(\frac{15 f_1 f_2 - 2 q_1 q_2}{2 E_{1X} - E_{2X}} \right), \\
\nu_4 &= \frac{k' \alpha' \nu_f}{3} \left(\frac{15 f_2^2 + 4 q_2^2}{2 E_{1X} - E_{2X}} \right), \\
\nu_5 &= \frac{4 k' \alpha' \nu_f}{3} \left(\frac{3 E_{1Z}}{2 E_{1Z} - E_{2Z} + 8 \rho^2} \right), \\
\nu_6 &= \frac{k' \alpha' \nu_f}{3} \left(\frac{15 f_2^2 + 2 q_1^2 + 8 \rho^2}{2 E_{1Z} - E_{2Z} + 8 \rho^2} \right), \\
\nu_7 &= \nu_3 / 2.
\end{align*}
\]

where \(E_{1X}, E_{1Z}, E_{2X}, E_{2Z} \) and \(E_3 \) are, respectively, energy differences between the ground state \(4E[4T_1(F)] \) and the excited states \(4E[4T_2(F)], 4A_2[4T_1(P)], 4E[4T_2(F)], 4B_2[4T_2(F)] \) and \(4B_1[4A_2(F)] \). They, and also the separation \(\Delta \) can be obtained from the d-d transition energy matrices.

Obviously, if the CO effect is ignored, i.e., \(\lambda, \gamma = 0 \) and so \(N_{ij} = 1, k = k' = 1, \
\zeta = \zeta' = \zeta_0 \); (4) and (5) become the formulas in [4].

The parameters \(f_i, q_i \) and \(W_{ij} \) in the above formulas are related to the admixture among the ground state \(\phi_i \) and the excited states \(\pi_i, \psi \) via the CI effect by means of Coulomb repulsion and crystal field interaction. There are 5 energy levels involved in the CI effect, i.e.,

\[
\begin{align*}
\phi_i &= \beta_i \phi_1 - \tau \pi_1 + \rho \psi_1, \\
\psi_i &= \beta_i \phi_1 - \tau' \pi_1 - \rho' \psi_1.
\end{align*}
\]

with the normalization relationship

\[
\epsilon^2 + \tau^2 + \rho^2 = 1, \quad \epsilon''^2 + \tau''^2 = 1.
\]

Similarly, considering the CI between the excited states and ground states, we can write the wave functions of the excited states as

\[
\begin{align*}
\pi_i' &= \epsilon' \left[\pi_1 + \tau \pi_1 + \rho \psi_1 \right], \\
\psi_i' &= \epsilon'' \left[\pi_1 - \rho' \psi_1 - \tau' \pi_1 \right].
\end{align*}
\]

with the normalization relationship

\[
\epsilon''^2 [1 + (\pi \epsilon')^2 + (\tau' \epsilon'')^2] = 1, \\
\epsilon''^2 [1 + (\pi \epsilon')^2 + (\tau' \epsilon'')^2] = 1.
\]

From a modified perturbation procedure and the d-d transition energy matrices of the 3d\(^7\) ion in tetragonal symmetry, we have

\[
\begin{align*}
\tau &= \frac{-20D_0 + 6(D_x - 25/12 D_z)}{-30D_0 + 75 B + 9(D_x - 25/12 D_z)}, \\
\rho &= \frac{-2 \sqrt{15} (D_x + 5/4 D_z)}{-80D_0 + 75 D_1 + 4 D_z}, \\
\tau' &= \frac{-20D_0 - 12 D_z}{-30D_0 + 75 B - 18 D_z}, \\
\rho' &= \frac{-2 \sqrt{15} (4D_x + 5 D_z)}{-40D_0 + 300 B + (75 D_1 + 28 D_z)}.
\end{align*}
\]

So, if the optical spectra parameters \(B, C, D_{ij}, D_s, D_t \) are obtained from the optical spectra of the studied crys-
tal (also, the tetragonal field parameters D_s and D_q are often calculated from the structural parameters), the above 8 CI coefficients, i.e., ϵ, τ, ρ, ϵ', τ', ρ', τ'', and ρ'' can be calculated from the 8 expressions in (9), (11) and (12). Thus, by using the perturbation method, the parameters f_i, q_i, and W_{ij} in the formulas of g_i and A_i can be expressed in terms of these CI coefficients, i.e.,

$$
\alpha = \frac{3}{2} \epsilon^2 - \sqrt{15} \epsilon \rho + \frac{1}{2} \rho^2 - \tau^2,
$$

$$
\alpha' = \frac{3}{2} \epsilon \epsilon' - \sqrt{15} \epsilon' \rho - \tau \tau',
$$

$$
f_i = -\epsilon \epsilon'' \left[1 + \frac{2}{\sqrt{15}} \epsilon \frac{\tau \tau'' - \rho^2}{\epsilon' \epsilon''} \right],
$$

$$
f_2 = -\epsilon' \epsilon'' \left[1 - \frac{3}{\sqrt{15}} \epsilon' \rho + \frac{2}{\sqrt{15}} \tau' \tau'' \right],
$$

$$
f_3 = \epsilon \left[1 + \frac{\rho}{\sqrt{15} \epsilon} \right],
$$

$$
q_1 = -\epsilon \epsilon'' \left[\frac{5 \tau}{2 \epsilon} + \frac{\sqrt{15}}{2} \left(\frac{\epsilon''}{\epsilon^3} - \frac{\tau \rho}{\epsilon} \right) - \frac{\rho \tau''}{2 \epsilon \epsilon''} \right],
$$

$$
q_2 = -\epsilon' \epsilon'' \left[\frac{3 \tau'}{2 \epsilon} + \frac{\sqrt{15}}{2} \frac{\tau''}{\epsilon''} \right],
$$

$$
q_3 = \epsilon \left[\frac{3 \tau}{2 \epsilon} + \frac{\sqrt{15}}{2} \frac{\tau'}{\epsilon'} \right],
$$

$$
W_X = \frac{2}{105} \left[2 \epsilon^2 + 12 \epsilon \tau - 7 \tau^2 - 2 \sqrt{15} \rho (\epsilon - 2 \tau) \right],
$$

$$
W_Z = -\frac{4}{105} \left[2 \epsilon^2 + 12 \epsilon' \tau' - 7 \tau'^2 \right],
$$

$$
W_{XZ} = \frac{1}{70} \left[\epsilon \epsilon' + 8 \epsilon \tau' + 8 \epsilon' \tau + \sqrt{3 / 5} \rho (\epsilon' + 8 \tau') \right],
$$

$$
W_{XY} = \frac{1}{70} \left[\epsilon^2 + 16 \epsilon \tau + 14 \tau^2 - 2 \sqrt{3 / 5} \rho (\epsilon + 8 \tau) - 5 \rho^2 \right].
$$

(13)

3. Calculations on $K_2ZnF_4:Co^{2+}$

Now we apply the above formulas to the calculations of the EPR parameters g_i and A_i for Co^{2+} in tetragonal K_2ZnF_4 crystal. From the superposition model [18], the tetragonal field parameters can be written as

$$
D_s = (4/7) \tilde{A}_2(R_0) \left[(R_0/R_{1y})^2 - (R_0/R_{1y})^4 \right],
$$

$$
D_q = (16/21) \tilde{A}_4(R_0) \left[(R_0/R_{1y})^4 - (R_0/R_{1y})^6 \right],
$$

(14)

where t_2 and t_4 are the power-law exponents. We take $t_2=3$ and $t_4=5$ because to the ionic nature of the bonds [19, 18]. $\tilde{A}_2(R_0)$ and $\tilde{A}_4(R_0)$ are the intrinsic parameters with the reference distance $R_0 (= R = (2 R_1 + R_3)/3)$. R_1 and R_3 are the bond lengths perpendicular to and parallel with the tetragonal axis. For K_2ZnF_4, X-ray studies [20, 21] show that $R_1^0 = 1.994 \text{ Å}$ and $R_3^0 = 2.03 \text{ Å}$. In general, the bond length R for an impurity-ligand pair is different from the corresponding bond length R^n in the host crystal because the ionic radius r_i of impurity is unlike the radius r_n of the replaced host ion. We can estimate reasonably the impurity-ligand distance R from the empirical formula [22, 23]

$$
R = R^n + (r_i - r_n)/2.
$$

(15)

For $K_2ZnF_4:Co^{2+}$, $r_i = 0.72 \text{ Å}$, $r_n = 0.74 \text{ Å}$ [24], so, we obtain $R_1 = 1.984 \text{ Å}$ and $R_3 = 2.02 \text{ Å}$ (so, the ligand octahedron is compressed as that in pure K_2ZnF_4).

For a 3d^2 ion in octahedra, we have $\tilde{A}_4(R_0) = (3/4) D_q$ [18, 19]. For $K_2ZnF_4:Co^{2+}$, no optical spectrum data are reported. We can estimate them reasonably from the optical spectra of a similar crystal. From the optical spectra of K_2CoF_4 [25], and in consideration of the average $Co^{2+}-F^-$ distance (= 2.008 Å) in $K_2ZnF_4:Co^{2+}$ being slightly smaller than that (= 2.033 Å [26]) of K_2CoF_4, we estimate for $K_2ZnF_4:Co^{2+}$

$$
D_q = -880 \text{ cm}^{-1}, \quad B = 810 \text{ cm}^{-1}, \quad C = 3270 \text{ cm}^{-1}.
$$

(16)

The ratio $\tilde{A}_2(R_0)/\tilde{A}_4(R_0)$ is in the range of 9 ~ 12 for 3d^2 ions in many crystals [19, 27, 28], we take $\tilde{A}_2(R_0) = 11 \tilde{A}_4(R_0)$ here. Thus, from (14) we obtain

$$
D_s = 226 \text{ cm}^{-1}, \quad D_q = 46 \text{ cm}^{-1}.
$$

(17)

The results are close to those obtained for the similar K_2CoF_4 crystal [25]. By using the optical spectrum parameters B, C, D_q, D_s, and D_i, the parameters in (9), (11)–(13) can be calculated (There are too many, so we do not list them here).

The LCAO coefficients in (2) can be determined from a semiempirical LCAO method [14, 15], which yields the approximate relationship

$$
f_\gamma = N_\gamma^2 \left[1 + \lambda^2 \gamma S_{dp} (\gamma) - 2 \lambda \gamma S_{dp} (\gamma) \right] \right),
$$

(18)

and the normalization correlation

$$
N_\gamma (1 - 2 \lambda \gamma S_{dp} (\gamma) + \lambda^2) = 1,
$$

(19)

where $S_{dp} (\gamma)$ is the group overlap integral. $f_\gamma = (B/B_0 + C/C_0)/2$ is the ratio of the Racah parameters for an ion in a crystal to those of a free ion. For free Co^{2+} ion, $B_0 = 1115 \text{ cm}^{-1}$ and $C_0 = 4366 \text{ cm}^{-1}$ [29]. So, from the
Table 1. The EPR parameters g_i and A_i for K_2ZnF_4:Co$^{2+}$.

<table>
<thead>
<tr>
<th></th>
<th>Cal$^{(a)}$</th>
<th>Cal$^{(b)}$</th>
<th>Cal$^{(c)}$</th>
<th>Expt. [3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td>5.76</td>
<td>6.42</td>
<td>6.36</td>
<td>6.30</td>
</tr>
<tr>
<td>g_2</td>
<td>3.63</td>
<td>3.36</td>
<td>3.19</td>
<td>3.13</td>
</tr>
<tr>
<td>A_{ii}</td>
<td>225</td>
<td>318</td>
<td>285</td>
<td>290</td>
</tr>
<tr>
<td>A_{ij}</td>
<td>49</td>
<td>47</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

$^{(a)}$ Calculated neglecting the CI effect, i.e., $\varepsilon = \varepsilon' = \varepsilon'' = 1$, $\tau = \tau' = \tau'' = 0$, and $\alpha = \alpha' = \alpha'' = 0$.
$^{(b)}$ Calculated neglecting the CO effect, i.e., $k = k' = 1$, $\xi = \xi' = \xi'' = 0$.
$^{(c)}$ Calculated considering both effects.

B and C values in (16) we obtain $f = 0.7377$. Since the tetragonal distortion of the $(\text{CoF}_6)^{2+}$ cluster in K_2ZnF_4:Co$^{2+}$ is small, we obtain $\Delta_{1p}(t_2g) = 0.00878$ and $\Delta_{1p}(e_g) = 0.03184$ by using the Slater-type SCF functions [30, 31] and the above average Co$^{2+}$–F$^-$ distance $\bar{R} = 2.008 \text{Å}$. Thus, from (18) and (19) we obtain $\eta_1 = 0.8620$, $\eta_2 = 0.8705$, $\gamma_1 = 0.4090$ and $\gamma_2 = 0.4188$. For a $(\text{CoF}_6)^{2+}$ cluster, $\xi_1 = 533 \text{cm}^{-1}$ [29], $\xi_2 = 220 \text{cm}^{-1}$ [32] and $P_0 = 254 \times 10^{-4} \text{cm}^{-1}$ [17], so we obtain

$$k = 0.9341, \quad k' = 0.7920, \quad \xi = 475 \text{ cm}^{-1}, \quad \xi' = 445 \text{ cm}^{-1}, \quad P = 189 \times 10^{-4} \text{ cm}^{-1}, \quad P' = 191 \times 10^{-4} \text{ cm}^{-1}. \tag{20}$$

The core polarization constant $\kappa = 0.325 \pm 0.01$ [4] we take $\kappa = 0.316$ here. Using all these parameters in the above formulas, we calculate the EPR parameters g_i, g_{ij}, A_{ii} and A_{ij} for K_2ZnF_4:Co$^{2+}$. The calculated results and the observed values are shown in Table 1. For comparison, the calculated values by considering only CI effect or CO effect are also shown in Table 1.

4. Discussion

Table 1 shows that the calculated EPR parameters g_i, g_{ij}, A_{ii}, and A_{ij} from the perturbation formulas based on the cluster approach for the tetragonal K_2ZnF_4:Co$^{2+}$ crystal agree well with the observed values (note: the experimental value of A_{ij} was not reported), suggesting that these formulas are reasonable and can be applied to similar systems.

Both the CI and CO effects contribute to the EPR parameters. If the CI effect is neglected, the calculated g_i and A_i agree poorly with the observed values (see Table 1). If the CO effect is neglected, all the calculated values of g_i and A_i are greater than the observed values. It can be expected that in the case of crystals having stronger covalency (for example, Br$^-$ or I$^-$ as the ligands), the role of the CO effect is greater and neglect of the CO effect should result in greater calculated errors. So, reasonable explanations of EPR parameters for 3d7 ions in tetragonal octahedral crystals should take both effects into account.

From the above studies we conclude that for Co$^{2+}$ in compressed ligand octahedra, $\Delta g (= g_{ij} - g_{ii}) < 0$, and for Co$^{2+}$ in elongated ligand octahedra, $\Delta g > 0$. The conclusion is opposite to that given in [4–6], where for Co$^{2+}$ in elongated octahedra, $\Delta g < 0$. The following points support our conclusion: (i) Susceptibility analysis [3] showed that for K_2CoF_4, $\Delta g (-3.3–6.5) < 0$. From the X-ray diffraction studies [26], one can find that the $(\text{CoF}_6)^{2+}$ cluster in K_2CoF_4 is elongated. (ii) In the previous paper [33], we obtain for 3d7 ions in tetragonal octahedra

$$\Delta g = (\theta - \theta_0) \left(\frac{\partial D}{\partial \theta} \right)_0 = 2(\theta - \theta_0)(F_{11} - F_{12}), \tag{21}$$

where F_{11} and F_{12} are the spin-lattice coupling coefficients, θ is the angle defined by $\tan \theta = R_{ik}/R_{ii}$, $\theta_0 (= \pi/4)$ is the same angle in cubic symmetry. Obviously, if $\theta - \theta_0 < 0$, then $R_{ik} > R_{ii}$, the ligand octahedron is compressed, and if $\theta - \theta_0 < 0$, it is elongated. For 3d7 ions in octahedral crystals, we have $F_{11} - F_{12} < 0$ (for example, $F_{11} - F_{12} = -101$ for MgO:Co$^{2+}$ [34] and $F_{11} - F_{12} = -56$ for MgO:Fe$^2+$ [35]). So, one can find that for Co$^{2+}$ in a compressed octahedron $(\theta - \theta_0 > 0)$, $\Delta g < 0$ rather than $\Delta g > 0$. (iii) In [4–6], the tetragonal parameters D_x, D_y, and hence the separation Δ are the adjustable parameters. They are not calculated from the crystal-field theory related to the structural parameters of ligand octahedron. From the crystal-field theory (note: for a 3d7 ion, $D_Q < 0$) it can be found that for Co$^{2+}$ in elongated octahedra, the ground state is 4A_2 rather than 4E given in [4–6]. This misassignment of the ground state results in the incorrect sign of Δg. So, the relationship between the sign of Δg and the tetragonal distortion of a ligand octahedron obtained in the present paper is reasonable and correct.

terpress Enterprise, Jerusalem 1974.
don 1970.