High Pressure Dielectric Studies of a Substance with the Smectic A\(_1\) Phase

Stanislaw Urban and Albert Würflinger

Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow, Poland

Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany

Reprint requests to Prof. S. U.; Fax: 0048-12-633-7086; E-mail: ufurban@cyf-kr.edu.pl

Z. Naturforsch. 54a, 455–458 (1999); received July 12, 1999

The results of dielectric studies of 5-n-hexyl-2-(4'-isothiocyanato)-1,3-dioxane (6DBT) in the smectic A\(_1\) phase at pressures up to 150 MPa and temperatures up to 340 K are presented. The low frequency relaxation time \(\tau_l(p, T)\) yields the activation volume \(\Delta^V V_l = RT \ln \tau_l/\partial p\) and activation enthalpy \(\Delta^H H_l = R \ln \tau_l/\partial T\). The calculated values of these parameters are compared with those obtained recently for n-octyl-cyanobiphenyl (8CB) forming the smectic A\(_2\) phase. In the case of 6DBT both these quantities are practically constant, whereas those for 8CB decrease, when going away from the phase transitions isotropic – smectic A\(_1\) (6DBT) or nematic – smectic A\(_1\) (8CB). These differences support our earlier conclusion that increase of pressure leads to a breaking of the antiparallel association of cyanobiphenyl molecules in the smectic as well as in the nematic phases.

Key words: Liquid Crystal; Smectic A; Dielectric Properties, High Pressure.

1. Introduction

Our recent high pressure (h.p.) studies of the low frequency (l.f.) dielectric relaxation process in the smectic A (Sm A) phase concerned liquid crystalline substances with the cyano (–CN) group at the terminal position. These substances were: 4-n-octyloxy- and 4-n-octyl-cyanobiphenyl (80CB and 8CB) [1–3]. They form the so-called Sm A\(_1\) phase in which the layer thickness \(d\) does not correlate with the molecular length \(l\). In the case of the above mentioned substances the ratio \(d/l = 1.4\) [4] means that the molecules partly overlap within the layer. Some peculiar behaviour of the activation parameters derived from the h.p. dielectric relaxation studies of 80CB and 8CB were interpreted by us as the result of breaking of antiparallel association of the molecules (the same concerns the nematic phase as well) [1–3]. For the present studies we have chosen a substance with the isothiocyanato (–NCS) terminal group which forms exclusively the Sm A\(_1\) phase [5] for which \(d/l\) is close to unity [5–7]. Thus, one would expect some differences in the influence of the pressure on the parameters characterizing the molecular rotations around the short axes in comparison with those observed for the cyanocompounds.

2. Experimental

The substance studied, 5-n-hexyl-2-(4'-isothiocyanato)-1,3-dioxane (6DBT)

\[
\begin{align*}
H_\text{13} & \text{C}_6 - \text{O} \\
& \text{NCS}
\end{align*}
\]

belongs to the \(n\)DBT homologous series in which the compounds with \(n\) from 4 to 12 exhibit the smectic A polymorphism only [6, 7]. 6DBT has the broadest range of the SmA phase between 307 K (melting) and 352 K (clearing). Its \((p, T)\) phase diagram was not established yet. In the present study only a rough establishment of the smectic A – crystalline transition was possible: \(T_{\text{SmA-Cr}} = 307 + 0.19\; p\) [MPa]. The experimental conditions for dielectric measurements were the same as in [2]. The measurements of the complex dielectric permittivity, \(\varepsilon'' = \varepsilon' - i\varepsilon''\), were performed on decreasing the pressure at constant temperature. For safety reasons the measurements could not be extended beyond 150 MPa and 350 K. Therefore, no spectrum for the isotropic phase could be measured due to the high temperature of the clearing point.

3. Results

Typical relaxation spectra measured at one pressure and different temperatures are presented in Fig. 1 in the...
St. Urban and A. Würflinger • High Pressure Dielectric Studies of 6DBT

Fig. 1. Dispersion, $\varepsilon'(v)$, and absorption, $\varepsilon''(v)$, spectra collected at one pressure (100 MPa) and different temperatures of the Sm A phase of 6DBT.

Fig. 2. Pressure dependence of the static ε_s and high frequency ε'' permittivities measured at several isotherms of the Sm A phase of 6DBT.

Fig. 3. Pressure dependence of the relaxation times at all studied isotherms of the Sm A phase of 6DBT.

Fig. 4. Pressure dependence of the activation parameters of 6DBT.

The spectra can be described very well by the Debye equation

$$\frac{\varepsilon^* - \varepsilon_m}{\varepsilon_s - \varepsilon_m} = \frac{1}{1 + i \omega \tau},$$

where ε_s and ε_m are the static and high frequency permittivities, respectively, and their difference the dielectric increments, characterize the strength of a given relaxation process. The pressure dependence of both permittivities at several temperatures within the SmA phase of 6DBT is presented in Figure 2. The relaxation times τ_\parallel were calculated from the frequency corresponding to the maximum of losses v_m: $\tau_\parallel = 1/(2 \pi v_m)$. They are presented in semilogarithmic scale in Figure 3. Using these data, the activation parameters are derived. The slope of the curves in Fig. 3 defines the activation volume: $\Delta^a V_\parallel = RT \left(\partial \ln \tau_\parallel / \partial p \right)_T$. As can be seen in the figure, the points are well placed on the straight lines in a broad range of the pressure values. The results of calculations are presented in Fig. 4 vs. temperature. Taking the relaxation times at constant pressure one can calculate the activation...
Fig. 4. Activation volume as a function of temperature of the Sm A phase of 6DBT. For comparison the results for 8CB taken from [2] are shown (crosses).

Fig. 5. Activation enthalpy as a function of pressure of the Sm A phase of 6DBT. For comparison the results for 8CB taken from [2] are shown (crosses).

4. Discussion

The dielectric studies of the nDBT compounds at ambient pressure exhibited the appearance of two relaxation processes [7, 8]. They were attributed to the molecular rotations around the short axes (low frequency process) and around the long axes (high frequency process). The analysis of the dielectric increments \(\varepsilon_i - \varepsilon_\infty \) corresponding to both relaxation processes in the isotropic phase of 6DBT allowed to estimate the dipole moment \((\mu = 4.1 \text{ D}) \) and the angle \(\beta \) it forms with the long axis (31°). At the Is–SmA phase transition a considerable drop in the permittivity was observed (from ca. 9.2 to ca. 5.8). This was undoubtedly caused by a lack of orientation of the SmA phase. In the present study the static permittivity \(\varepsilon_s \) within the smectic phase reached values comparable with those observed in the isotropic phase (Figure 2). We checked, however, that the electric field of ca. 300 V/cm did not influence the \(\varepsilon_\infty \)-values. One can conclude therefore that the present experimental conditions facilitated the orientation of the sample parallel to the measuring field. Decreasing \(\varepsilon_s \) with lowering of the pressure is a typical behaviour observed for all nematics hitherto studied by us [3, 9, 10].

The fits of the Debye equation to the spectra give large values of the “infinity” permittivity \(\varepsilon_\infty = 5.6 \), markedly exceeding the refractive index squared (see Figure 2). This means that yet another relaxation process at much higher frequencies should be observed, similarly to the studies at ambient pressure [7, 8]. In spite of the large difference in the permittivities in both experiments, mentioned above, it seems worthwhile to notice the nice consistency between the present results for the relaxation times and activation enthalpy and those obtained at ambient pressure studies [7] (compare Figs. 3 and 5).

The activation parameters, \(\Delta^\theta V_{||} \) and \(\Delta^\theta H_{||} \), obtained for 6DBT are compared in Figs. 4 and 5 with those characterizing the cyano compound 8CB. The striking features of these plots are (i) the practically constant values of both parameters in the case of the isothiocyanato compound, having the Sm A\textsubscript{1} phase, and (ii) the marked decrease of the parameters (especially the activation volume) in the case of the cyano compound with the Sm A\textsubscript{d} phase. Therefore, the conclusion that the pressure destabilizes the antiparallel dipole-dipole associations in the Sm A\textsubscript{d} phase seems to be corroborated by the results of the present study.

Acknowledgements

Financial supports of the Polish Government (KBN) Grant No 2 PO3B 059 13 and the Deutsche Forschungsgemeinschaft are gratefully acknowledged.