Low Frequency Dielectric Relaxation Process in Liquid Crystals with Nematic and Liquid-Like Smectic Phases

S. Urban*, H. Kresseb, and R. Dąbrowskić

* Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland

b Institute of Physical Chemistry, Martin-Luther-University, Mühlpforte 1, Halle/S, Germany

c Institute of Chemistry, Military University of Technology, Warsaw, Poland

Z. Naturforsch. 52a, 403–408 (1997); received February 17, 1997

Results of dielectric studies of the low frequency relaxation process in several substances exhibiting nematic–smectic B and nematic–smectic A phase sequences. It was found that the rate of molecular reorientation around the short axes does not change at the transition between the nematic and the liquid-like smectic phase (Sm A, Sm C), whereas it is considerably retarded at that of the nematic–solid-like smectic (Sm B) phase. However, the activation barrier for this motion is markedly lower in the orthogonal smectics (Sm A, Sm B) than in the nematic and Sm C phases. The analysis of numerous experimental data on the activation enthalpy in the nematic phase shows that the Arrhenius equation conforms better with results than the Diogo-Martins approach, if the nematic range exceeds 10 K.

Introduction

Dielectric relaxation studies of liquid crystals (LCs) showing nematic and smectic polymorphism can give interesting information about the rotation of molecules in different surroundings, especially for low frequency (l.f.) relaxation processes connected with rotations of molecules about the short axes. This motion should change essentially between the nematic phase and a smectic phase having additionally a positional order in form of a layer structure. Taking into account the structural features of smectics, one can distinguish between liquid-like smectic phases, Sm A and Sm C, and solid-like smectic phases, Sm B, Sm G, Sm E, ..., in which some elements of long-range orientational and/or positional order of the molecules can be found [1, 2].

The experimental evidence of the influence of the phase structure on the l.f. dielectric relaxation processes is rather scarce [2–9]. The studies have shown jump-wise changes at the nematic–smectic phase transition of the relaxation times $\tau_{||}$ and activation enthalpies $\Delta H_{||}$ characterizing the molecular motions about the short axes. As one could expect, the relaxation times become usually longer in smectic phases, but surprisingly the activation enthalpy is lower in the Sm A and Sm B phases than in nematics [2–9]. This was established for single substances [2–4, 6–8] as well as for homologous series [5, 9].

The present paper deals with six substances showing the nematic and Sm C polymorphism, and a substance with the N–Sm A–Sm C phase sequence. The results are compared with the data of a series of substances with the N–Sm A polymorphism [5] and the N–Sm B polymorphism [8, 9]. The applicability of some activation equations for the description of $\tau_{||}(T)$ behaviour in the nematic phase having different temperature intervals is discussed.

Experimental

Table 1 contains the chemical structure and transition temperature of the substances studied. They were synthesized by one of us (R. D.), except of HOAB produced by Merck. The measurements of the complex dielectric permittivity, $\varepsilon'(v) = \varepsilon''(v) - ie''(v)$, were performed in the frequency range 1–13 MHz using an HP 4192A impedance analyzer. A parallel-plates capacitor was calibrated with standard liquids. The samples were oriented by a magnetic field (~ 0.7 T). The measurements started in the N phase, and then the samples were cooled down step by step. However, the alignment of the samples usually failed when the transition to a smectic phase was achieved. The temperature of the sample was stabilized within ± 0.1 K.
Table 1. Substances studied and their phase transitions.

<table>
<thead>
<tr>
<th>Substance and phase transitions [°C]</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₃C₂O□-[N]-N₂O-[OC]-OC₆H₁₃</td>
<td>HOAB</td>
</tr>
<tr>
<td>Cr-74.0-S-95.3-N-124.1-Is</td>
<td></td>
</tr>
<tr>
<td>H₃C₂O-[COO]-OC₆H₁₃</td>
<td>C8O/OC6</td>
</tr>
<tr>
<td>Cr-55.4-S-66.7-N-91.0-Is</td>
<td></td>
</tr>
<tr>
<td>H₃C₂O-[COO]-OC₆H₁₃</td>
<td>C8O/OC7</td>
</tr>
<tr>
<td>Cr-62.0-S-70.0-N-89.0-Is</td>
<td></td>
</tr>
<tr>
<td>H₃C₂-[CH₂CH₂]-[COO]-OC₆H₁₇</td>
<td>C5CyC2/OC8</td>
</tr>
<tr>
<td>Cr-66.8-S-84.2-N-156.0-Is</td>
<td></td>
</tr>
<tr>
<td>H₃C₂-[CH₂CH₂]-[COO]-OC₆H₁₇</td>
<td>C6BCyC2/OC8</td>
</tr>
<tr>
<td>Cr-77.6-S-90.8-N-201.0-Is</td>
<td></td>
</tr>
<tr>
<td>H₃C₂-[CH₂CH₂]-[COO]-OC₆H₁₉</td>
<td>C6BCyC2/OC9</td>
</tr>
<tr>
<td>Cr-74.5-S-105.3-N-192.2-Is</td>
<td></td>
</tr>
<tr>
<td>H₃C₆O-[COO]-OC₆H₁₃</td>
<td>C100/OC6</td>
</tr>
<tr>
<td>Cr-61.0-S-77.0-S₂-83.0-N-89.5-Is</td>
<td></td>
</tr>
<tr>
<td>H₃C₆-[CH₂]-[COO]-NCS [5]</td>
<td>nPCHB-NCS</td>
</tr>
<tr>
<td>Cr-109-S-124.5-N-239-Is</td>
<td>4PCHB-NCS</td>
</tr>
<tr>
<td>Cr-117-S-129-N-235-Is</td>
<td>5PCHB-NCS</td>
</tr>
<tr>
<td>Cr-104-S-146.5-N-225-Is</td>
<td>6PCHB-NCS</td>
</tr>
<tr>
<td>Cr-109-S-155.5-N-222-Is</td>
<td>7PCHB-NCS</td>
</tr>
</tbody>
</table>

Table 2. Activation enthalpies ΔH₂ and the ratios of the relaxation times τ₀ at the transition temperature between the nematic and smectic A or smectic C phases for particular substances.

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH₂ [kJ/mol]</th>
<th>τ_SmA/τ_SmC</th>
<th>τ_SmC/τ_SmA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Sm A</td>
<td>Sm C</td>
<td></td>
</tr>
<tr>
<td>HOAB</td>
<td>90 ± 4</td>
<td>93 ± 3</td>
<td>2.82</td>
</tr>
<tr>
<td>C8O/OC6</td>
<td>115 ± 3</td>
<td>105 ± 3</td>
<td>1.26</td>
</tr>
<tr>
<td>C8O/OC7</td>
<td>125 ± 4</td>
<td>113 ± 4</td>
<td>1.41</td>
</tr>
<tr>
<td>C5CyC2/OC8</td>
<td>79 ± 2</td>
<td>100 ± 2</td>
<td>1.22</td>
</tr>
<tr>
<td>C6BCyC2/OC8</td>
<td>76 ± 2</td>
<td>102 ± 4</td>
<td>1.27</td>
</tr>
<tr>
<td>C6BCyC2/OC9</td>
<td>79 ± 3</td>
<td>115 ± 4</td>
<td>1.16</td>
</tr>
<tr>
<td>C100/OC6</td>
<td>233 ± 10</td>
<td>128 ± 10</td>
<td>1.18</td>
</tr>
<tr>
<td>4PCHB-NCS</td>
<td>59 ± 3</td>
<td>38 ± 5</td>
<td>0.95</td>
</tr>
<tr>
<td>5PCHB-NCS</td>
<td>61 ± 3</td>
<td>41 ± 5</td>
<td>0.78</td>
</tr>
<tr>
<td>6PCHB-NCS</td>
<td>55 ± 3</td>
<td>40 ± 3</td>
<td>0.82</td>
</tr>
<tr>
<td>7PCHB-NCS</td>
<td>66 ± 5</td>
<td>46 ± 3</td>
<td>0.87</td>
</tr>
</tbody>
</table>

* Corresponds to τ_SmC/τ_SmA.

Results

Because the orientation of the samples could not be well established in the smectic phases, the measured permittivity values do not characterize properly the substances under study. Therefore, the temperature dependence of the static permittivities will not be analyzed. The observed relaxation processes for all substances were of the Debye-type. The relaxation times were calculated from the frequencies corresponding to the maxima of losses ε'_max: τ = 1/(2πν_max). As an example, Fig. 1 shows the absorption spectra measured in the nematic and Sm C phase of two substances. The relaxation times obtained for the substances with N and Sm C polymorphism are presented in Fig. 2 in the form of log τ₀ versus (1/T - 1/T_NC) plots (T_NC corresponds to the N–Sm C transition) in order to avoid shifts in the transition temperature. The same coordinates are used in Fig. 3, showing the results obtained recently for nPCHB-NCS homologous series with the N–Sm A polymorphism [5]. Separately, in Fig. 4 a plot of log τ₀ vs. 1/T for the substance with two smectic phases is shown. The activation enthalpies ΔH₂ were calculated from the Arrhenius equation

\[τ₀ = τ₀ \exp \left(\frac{ΔH₂}{k_B T} \right) \] (1)

and are listed in Table 2.

Discussion

Let us first consider whether (1) can be used for the calculation of the activation enthalpy in a nematic phase existing in very different temperature ranges. It has been well established [2, 3, 10, 11] that substances having a narrow range of the N phase exhibit a strong temperature dependence of the relaxation time τ₀. This is also observed in present studies, especially in the case of C10/OC6 (see Fig. 4 and Table 2). In Fig. 5 we have gathered the activation enthalpies obtained for 35 substances with a large spread of temperature ranges of the N phase. Only in case of a very narrow T_N - T range (below, say, 10 K), the ΔH₂ values are unrealistically large. For broader nematic ranges a large scatter of points seems to suggest that other factors, like molecular lengths and polarity, may influence the magnitude of the activation enthalpies.

Benguigui [3] has generally questioned the applicability of the Arrhenius equation to the N phase. He...
Fig. 1. Examples of the dielectric loss spectra, $\varepsilon''(\nu)$, measured for HOAB and C100/OC6 in different phases.

Fig. 2. Activation plots for substances with the nematic-Sm C polymorphism: 1 – HOAB, 2 – C80/OC6, 3 – C80/OC7, 4 – C5CyC2/OC8, 5 – C6BCyC2/OC8, 6 – C6BCyC2/OC9. (T_{NC} corresponds to the nematic-Sm C transition.)
argued that the relation derived by Diogo and Martins [13] would be more appropriate:

$$\tau_\parallel = \frac{h}{k_B T} \left[\exp\left(\frac{\varepsilon S}{k_B T} \right) \right] \left[\exp\left(\frac{\theta S^2}{T - T_0} \right) \right],$$

where h is Planck's constant, and S the order parameter, ε, θ and T_0 are nonuniversal parameters depending on the materials. The first exponential term is the probability that a molecule has enough energy to jump over the nematic potential $q = \varepsilon S$, whereas the second one is the probability that there is enough room for that motion. As it has been discussed by Massalska-Arodz [14] the second term may be important at low temperatures close to the glass transition (if it exists). In the vicinity of the clearing point, where S changes distinctly, the energy term seems to be important. Really, in case of a narrow temperature range of the N phase, (1) gives unrealistic parameters. For example, in the case of C10O/OC6 the preexponential factor τ_0 is of the order of 10^{-40} s and ΔH_\parallel is over 200 kJ/mol, thus much larger than for other similar compounds.

On the other hand, the plots of $\ln \tau_\parallel$ versus $1/T$ are usually straight lines (see Figs. 2–4) which favors (1) rather than (2). Namely, both equations could be equivalent if the order parameter $S \sim (T - T_0)^0$, whereas it is well described by the Haller equation $S = S_0 (T^* - T)^\lambda$ with $\lambda \approx 0.2$ [15, 16] (additionally it is necessary to note that T^* is close to T_{NI}, whereas T_0 is supposed to be distinctly lower [3, 13]). Therefore, Benguigui's objections seem to be not substantial, especially when the N phase is very broad and the measurements are performed in temperature intervals which are far below of T_{NI}. That is the case for nPCHB-NCS substances, as well as for C5CyC2/OC8, C6BCyC2/OC8 and C6BCyC2/OC9 compounds, for which the dielectric spectra were measured at $T < (T_{NI} - 50)$ K [5], where $S(T)$ changes very slowly. In those cases the preexponential factors τ_0 are of the order of 10^{-17} s, like in the smectic phases.
Let us compare the present results with the ones available in literature for other LC substances exhibiting the nematic–smectic polymorphism. At the transitions between N and Sm A, and N and Sm C phases the relaxation times τ_\parallel change rather little (see Figs. 1, 2 and Table 2). On the other hand, at the transition between N and Sm B phases the ratio τ_N/τ_{SmB} is distinctly larger, reaching values ~ 2000 [8, 9]. Thus, the rate of molecular reorientations around the short axes does practically not change when the nematic–liquid-like smectic phase transition point is approached, whereas it becomes distinctly retarded in the solid-like smectic B phase [2, 3, 8, 9].

Surprisingly, the energy barrier hindering the motion under consideration does not behave in the same way. As it can be seen in Table 2, the activation enthalpy is always larger in the N phase than in the Sm A phase. This holds for very different LC substances and different Sm A phases [2–5]. Also, in the Sm B phase activation enthalpy is smaller than in the N phase [8, 9]. In the case of N–Sm C polymorphism the activation enthalpies obtained in both phases are roughly equal for two-rings compounds, and are larger for Sm C phase in case of three-rings compounds. A small increase of a hinderance of the motion is observed for longer members of a homologous
series, whereas the replacement of cyclohexyl by a bicyclic ring does not influence the activation barrier markedly.

Conclusions

The results on the low frequency relaxation process in several LC substances exhibiting the nematic and smectic polymorphism allow to conclude that:

- the rate of molecular motions around the short axes becomes practically unchanged in the case of 'nematic-liquid-like smectic' (Sm A, Sm C) phase transitions, whereas the transition 'nematic-solid-like smectic' (Sm B) results in a considerable decrease of the relaxation times;
- the activation barrier hindering the motion under consideration is markedly lowered if the 'nematic-orthogonal smectic' (Sm A, Sm B) transition is passed; however, the question why the relaxation time considerably increases at the N–Sm B transition while the energy barrier decreases is still open;
- at the phase transition 'nematic-Sm C' the values of ΔH are almost unchanged in case of two-ring compounds, whereas a marked increase is observed for three-ring compounds;
- the Arrhenius equation seems to be appropriate to the analysis of $\tau(T)$ dependencies if the nematic range exceeds ca. 10 K.