Temperature Dependence of 14N NQR and Phase Transitions in KNO$_2$ Powder*

Hae Jin Kim, Kee Tae Han**, and Sung Ho Choh
Department of Physics, Korea University, Seoul 136-701, Republic of Korea

Z. Naturforsch. 51a, 769–772 (1996); received April 2, 1996

The temperature dependence of 14N NQR, measured at 77 to 300 K, is in better agreement with the model proposed by Blinc et al. than the Bayer theory. The nuclear quadrupole coupling constant and asymmetry parameter show a discontinuity at about 160 K and 230 K, respectively. The linewidths are broadened at these temperatures up to 22 kHz and 18 kHz, respectively. These results indicate that KNO$_2$ undergoes phase transitions at these two temperatures.

Introduction

14N NQR in KNO$_2$ at 4.2 to 50 K has been studied by Matukhin et al. [1]. At room temperature KNO$_2$ is rhombohedral [2, 3] and above 320 K it is cubic (Fm3m) with rotational disorder of the nitrite group [2, 3]. More phase transitions of KNO$_2$ are reported [4, 5]. Parry et al. [6] and Rao et al. [7] reported that the room temperature phase is ferroelectric and the phase above 320 K is paraelectric. According to other authors, however, the room temperature phase is not ferroelectric [8, 9]. A big dielectric anomaly has been found at 230 K [9]. Seven phases of KNO$_2$ have been identified by Raman spectroscopy using various combinations of temperature and pressure [10]. Adams et al. [11] have found nine phases of KNO$_2$, using Raman spectroscopy. Some phases and corresponding crystal structures are listed in Table 1.

In this work, the temperature dependence of the 14N NQR line positions and linewidths were measured in the temperature range from 77 to 300 K for the first time.

Table 1. Crystallographic data of some phases of KNO$_2$.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (K)</th>
<th>Structure</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>above 320 K</td>
<td>cubic</td>
<td>Fm3m</td>
</tr>
<tr>
<td>II</td>
<td>260–320 K</td>
<td>rhombohedral</td>
<td>R3m</td>
</tr>
<tr>
<td>III</td>
<td>230–260 K</td>
<td>monoclinic</td>
<td>P2$_1$/c</td>
</tr>
<tr>
<td>IV</td>
<td>below 230 K</td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

I. Experimental

The employed KNO$_2$ powder with 97% purity was commercially available (Jassen Chemica GEEL, Belgium). This powder was packed in a pyrex tube and sealed. The NQR measurements were made with an FET-adopted Robinson type spectrometer [12]. The temperature of the sample was measured with an alumel-chromel thermocouple, the reference junction being kept at the boiling point of liquid nitrogen at the ambient pressure.

II. Results and Discussion

The 14N (I = 1) NQR spectrum consists of two resonance lines (v_+ and v_-) [13]:

$$v^\pm = \frac{3e^2qQ}{4\hbar} \left(1 \pm \frac{\eta}{3}\right),$$

(1)

where e^2qQ/h and η are the quadrupole coupling constant and the asymmetry parameter, respectively. Figure 1 shows the temperature dependence of the two 14N NQR lines in KNO$_2$, where the data at 4.2 K stand for the values reported by Matukhin et al. [1]. According to Bayer [14], the temperature dependence of NQR lines may be approximated by a simple harmonic motion of a molecule around an equilibrium position with the torsional oscillation frequency. Both the amplitude and the number of vibrational modes of the molecule increase with temperature, resulting in a reduction of the time averaged electric field gradient (eg). Considering only one vibrational mode around the O–O axis of NO$_2^-$, one may express the change in...
Fig. 1. Temperature dependence of the two 14N NQR lines (v^+ and v^-) in KNO$_2$; the dotted line stands for the result calculated with Bayer's theory and the solid line with the model proposed by Blinc et al. The arrows indicate the phase transition temperature 160 K.

The NQR frequencies and P_s values of KNO$_2$ and NaN$_2$O [16-18] at room temperature and 77 K are listed in Table 2. The fitting parameters of (3) for KNO$_2$ are compared with those for NaN$_2$O in Table 3. The coefficients x^\pm and β^\pm in (3) are related to the contribution of the spontaneous electric polarization, and the factor D^\pm to the torsional vibration of NO$_2^-$. As can be seen from Table 3, the temperature dependence of 14N NQR in KNO$_2$ is slightly different from that in NaN$_2$O. Incidentally, the absolute values of x^\pm and β^\pm for KNO$_2$ are even smaller than those for NaN$_2$O. This implies that the changes in nuclear frequencies due to temperature by

$$v^\pm = v^\pm |_0 \left[1 - \frac{3h}{2A\omega} \left(\frac{1}{2} + (\exp(h\omega/kT) - 1)^{-1} \right) \right],$$

where $v^\pm |_0$ is the NQR frequency at 0 K, A is the moment of inertia of NO$_2^-$ around the O=O axis, and ω is the torsional frequency (for KNO$_2$: $A = 29.4 \times 10^{-40}$ g \cdot cm2, $\omega = 120$ cm$^{-1}$ [11]). As can be seen from Fig. 1, Bayer’s theory (the dotted line) with parameters of $v^\pm |_0 = 4799$ and $v^\pm |_0 = 3718$ kHz, cannot explain the experimental data at higher temperatures. In order to reduce the difference between the experimental data and Bayer’s theory, we have introduced an order parameter $p (0 \leq p \leq 1)$, being the reduced spontaneous polarization. The spontaneous polarization (P_s) of KNO$_2$ at 298 K is known to be 2.8 μC/cm2 [15], but its temperature dependence is not known. We assumed that it might be a function of $P_s(T) = 5.44 \times (1 - T/320)^{1/5}$, where the 1/5-power was taken from that in NaN$_2$O [16]. Then the temperature dependence of v^+ and v^- in KNO$_2$, like in case of NaN$_2$O, can be approximated by the model proposed by Blinc et al. [17]:

$$v^\pm |_0 = v^\pm |_0 + \alpha p^2 + \beta p^4,$$

where the Bayer-term is due to the torsional vibration of NO$_2^-$ around the axis of the O=O bond in KNO$_2$, whereas the contribution $v^\pm |_0$ arises from the ferroelectricity. $v^\pm |_0$ is the frequency at 0 K, and α^\pm, β^\pm and D^\pm are constants. In Fig. 1, the solid line denotes the best fit of (3) to the experimental data with following parameters, all in units of kHz; for the v^+ line, $v^+_0 = 4636$, $D^+ = -130.4$, $\alpha^+ = 17.3$ and $\beta^+ = -0.5$; and for the v^- line, $v^-_0 = 3632$, $D^- = -74.6$, $\alpha^- = 7.2$ and $\beta^- = -0.2$. Figure 1 shows that the Blinc model explains the experimental results better than the Bayer theory in the high temperature range.

The NQR frequencies and P_s values of KNO$_2$ and NaN$_2$O [17-22] at room temperature and 77 K are listed in Table 2. The fitting parameters of (3) for KNO$_2$ are compared with those for NaN$_2$O in Table 3. The coefficients x^\pm and β^\pm in (3) are related to the contribution of the spontaneous electric polarization, and the factor D^\pm to the torsional vibration of NO$_2^-$. As can be seen from Table 3, the temperature dependence of 14N NQR in KNO$_2$ is slightly different from that in NaN$_2$O. Incidentally, the absolute values of x^\pm and β^\pm for KNO$_2$ are even smaller than those for NaN$_2$O. This implies that the changes in nuclear
quadrupole interaction in KNO$_2$ due to the temperature arise mainly from the torsional motion of NO$_2^-$ rather than the ferroelectricity.

The transition temperatures of this material were reported by many investigators [2–10]. With structural phase transformations, the resonance frequencies generally display abrupt changes at the transition temperature. These frequency-changes are due to the electron distribution within the molecules affected by intermolecular forces. This environmental alteration results from the change in crystal structure and causes a discontinuity of the resonance frequencies. The broadening effects are due to the fluctuation of the efg and dipole-dipole interaction at the phase transition.

For the magnetic dipole-dipole interaction, the dipolar broadening is given by [23]

$$\Delta v = \mu_{ne} \gamma/(r^3 \times 2 \pi),$$

(4)

where γ is the magnetogyric ratio of the resonant nucleus, μ_{ne} is the magnetic moment of the neighboring nucleus, and r is the distance between the two nuclei. For the interaction between 14N and 17O nuclei in NO$_2^-$ one has

$$\gamma = 0.193 \times 10^4,$$ $\mu_{ne} = -1.89 \mu_n$ and $r = 2.07$ Å and then $\Delta v = 0.3$ kHz.

Thus, the major contribution is from the fluctuation at the resonant nucleus at the temperature of the phase transition. Also, this fact induces the order-disorder reorientation in NO$_2^-$, proposed as the transition mechanism for the crystal as shown in Figure 2. The linewidth shows a remarkable broadening at about 160 K and 230 K, respectively, as shown in Figure 3. The phase transition at 230 K agrees with previous Raman studies [3, 24], but the phase transition at 160 K has not been reported yet.

Table 3. Comparison of the fitting parameters in (3) for KNO$_2$ and NaNO$_2$.

<table>
<thead>
<tr>
<th>NQR lines (kHz)</th>
<th>Parameters (kHz)</th>
<th>KNO$_2$</th>
<th>NaNO$_2$ [19]</th>
</tr>
</thead>
<tbody>
<tr>
<td>v^+</td>
<td>$v^+</td>
<td>_0$</td>
<td>4636</td>
</tr>
<tr>
<td>z^+</td>
<td>$z^+</td>
<td>_0$</td>
<td>17.3</td>
</tr>
<tr>
<td>β^+</td>
<td>$\beta^+</td>
<td>_0$</td>
<td>-0.5</td>
</tr>
<tr>
<td>D^+</td>
<td>$D^+</td>
<td>_0$</td>
<td>-130.4</td>
</tr>
<tr>
<td>v^-</td>
<td>$v^-</td>
<td>_0$</td>
<td>3632</td>
</tr>
<tr>
<td>z^-</td>
<td>$z^-</td>
<td>_0$</td>
<td>7.2</td>
</tr>
<tr>
<td>β^-</td>
<td>$\beta^-</td>
<td>_0$</td>
<td>-0.2</td>
</tr>
<tr>
<td>D^-</td>
<td>$D^-</td>
<td>_0$</td>
<td>-74.6</td>
</tr>
</tbody>
</table>

Fig. 2. Order-disorder arrangement of the molecular unit.

Fig. 3. The resonance linewidths (v^+ and v^-) vs. temperature.

III. Conclusion

The present work gives for the first time the temperature dependence of 14N NQR in KNO$_2$ above 50 K. The two resonance lines (v^+ and v^-) decrease with increasing temperature. Though this material has two phase transitions in the range of 77 to 300 K, the temperature dependence of 14N NQR in KNO$_2$ could be well explained by the Blinc model, assuming that $P_s(T) = 5.44(1 - T/320)^{1/5}$ and the torsional frequency ω is independent of temperature. This fact implies that the efg change at 14N due to the temperature dominantly originates from the torsional motion of NO$_2^-$. Our experimental results indicate two phase transitions near 160 K and 230 K. These transitions induce
a considerable increase in inhomogeneity of the electric field gradient near the resonant nucleus, which causes the line broadening as observed. The phase transition near 160 K is newly observed in KNO₂.

Acknowledgement

This work was supported by the KOSEF through the RCDAMP at Pusan National University (1994–1997).