The Structure of Amorphous Platinum Disulfide as Studied by Anomalous X-ray Scattering

Masatoshi Saito¹, Makoto Wakemaha, Nobuaki Sato¹, Takeo Fujino¹, Yoshio Waseda, Eiichiro Matsubara², and K. Thomas Jacob³

¹ Institute for Advanced Materials Processing, Tohoku University, Sendai 980-77, Japan
² Department of Materials Science and Engineering, Graduate School, Kyoto University, Kyoto 606, Japan
³ Materials Research Centre and Department of Metallurgy, Indian Institute of Science, Bangalore 560012, India

Z. Naturforsch. 49a, 1031–1036 (1994); received September 13, 1994

Anomalous X-ray scattering (AXS) has been applied to study the structure of amorphous platinum disulfide, Pt₁₋ₓSₓ, prepared by the precipitation process. The local atomic arrangement in amorphous Pt₁₋ₓSₓ was determined by the least-squares variational method so as to reproduce the experimental differential interference function at the Pt L₃ absorption edge by the AXS method as well as the ordinary interference function by Mo Kα. The structural unit model by Mo Kα for Pt₁₋ₓSₓ is found to be a PtS₃ octahedron, similar to that in crystalline PtS₃. These octahedra share both their corners and edges, while only edge-sharing linkages occur in crystalline PtS₂.

Introduction

Crystalline chalcogenides with a Group IV B to VIII B transition metal (M) are known to have a layered structure in MX₂ and a chain-like structure in stoichiometric MX₃ [1]. These crystalline chalcogenides have many interesting properties, such as charge density waves, intercalation chemistry and superconductivity, arising from their highly anisotropic and low dimensional structure. Amorphous transition metal chalcogenides are formed by precipitation from aqueous or non-aqueous solution at low temperature or by thermal decomposition of thio or seleno salts [2]. They frequently show better catalytic and electrochemical properties than the crystals.

The main purpose of this work is to present new structural information on amorphous platinum disulfide prepared from aqueous solution by applying the anomalous X-ray scattering (AXS) method.

Sample Preparation

Passaretti et al. [3] have prepared amorphous Pt₁₋ₓSₓ by the reaction of anhydrous hexachloroplatinite with hydrogen sulfide at various temperatures. The reaction time and temperature in this process were found to be critical. If the reaction temperature was too high, the hexachloroplatinate complex decomposed, while if the reaction temperature was too low, the reaction was not completed. In this work, the reaction was carried out in aqueous solution and amorphous platinum sulfide was obtained without such difficulties.

Hexachloroplatinic(IV) acid H₂PtCl₆ was prepared by dissolving platinum in aqua regia. Hydrochloric acid was added to the solution. This solution was evaporated to obtain a syrup form so as to drive off the nitric acid and any PtCl₄ • 2 NOCl which may be included. The thick solution was taken up with HCl and the resulting solution reevaporated to a syrup. This process was repeated several times. The residue was then diluted with distilled water. Finely dispersed precipitates of amorphous Pt₁₋ₓSₓ were produced by passing H₂S gas through this H₂PtCl₆ solution at room temperature. The precipitation was filtered off and extracted with carbon disulfide CS₂ to remove any sulfur that may have been deposited with the products. After extraction, the amorphous Pt₁₋ₓSₓ powder was carefully dried under vacuum so as to prevent oxidation by air, since it might be pyrophoric.

The ratio of sulfur to platinum in the amorphous sample was determined by thermogravimetric (TG) analysis with a balance using a silica spring. The heating rate was 5 K/min. The thermogravimetric curve is shown in Figure 1. It is seen that the sample starts to decompose at about 473 K and completely decomposed into Pt and S above 773 K. The X-ray powder

Reprint requests to Dr. Masatoshi Saito.

0932-0784 / 94 / 1100-1031 $ 06.00 © - Verlag der Zeitschrift für Naturforschung, D-72027 Tübingen
The diffraction pattern of the decomposed product has clearly confirmed the formation of metallic platinum. Assuming that the weight loss detected in this TG analysis is induced by sulfur release, the estimated value of x in the present amorphous $\text{Pt}_{1-x}\text{S}_2$ sample is 0.22. The mass density of amorphous $\text{Pt}_{1-x}\text{S}_2$, determined by the Archimedean method with toluene, is 5.7 g/cm3.

Experimental

The ordinary X-ray scattering measurement was carried out with Mo $K\alpha$ radiation. The AXS measurements were carried out at the beam line 6B in the Photon Factory of the National Laboratory for High-Energy Physics, Tsukuba, Japan. Monochromatic incident X-rays at energies from 4 to 21 keV were obtained with a Si(111) double-crystal monochromator. The sample was mounted on a double-axis diffractometer placed vertically so as to eliminate the polarization effect. The incident beam was monitored by a nitrogen-gas-flow-type ion chamber placed in front of the sample. By using the monitor counts, the number of photons incident on the sample was kept constant. Scattering intensities were measured by a scintillation counter with a pulse height analyzer. After the corrections for air scattering, absorption and polarization, the measured intensity was converted to electron units per atom by the generalized Krogh-Moe-Norman method using the X-ray atomic scattering factors and their anomalous dispersion terms [4]. The Compton scattering was corrected by the tabulated values [5].

Details of the data analysis of the AXS measurements have been given in [6]. Only some essential points are given below. When the energy of the incident X-ray beam is close to the absorption edge E_{abs} of one of the constituent elements, the atomic scattering factor becomes complex due to resonance scattering phenomena and can be expressed in the form $f(Q, E) = f^0(Q) + f'(E) + i f''(E)$, where Q and E are the wave vector and the incident X-ray energy, respectively. $f^0(Q)$ corresponds to the normal atomic scattering factor. The terms of $f'(E)$ and $f''(E)$ are the real and imaginary parts of the anomalous dispersion term, which depend upon the energy of the incident X-rays. Figure 2 shows the energy dependence of $f'(E)$ and $f''(E)$ of Pt calculated in the close vicinity of the Pt L_{III} absorption edge (11.562 keV) [7]. When the incident energy is set to an energy below Pt L_{III} absorption edge, the detected variation in intensity $\Delta I_Pt(Q)$ is attributed only to a change of the anomalous dispersion terms of Pt, f_{Pt}. Therefore, the following relation is readily obtained [8]:

$$\Delta I_Pt(Q) = \frac{\{I(Q, E_1) - \langle f^2(Q, E_1) \rangle\} - \{I(Q, E_2) - \langle f^2(Q, E_2) \rangle\}}{c_{\text{Pt}} \{f_{\text{Pt}}(E_1) - f_{\text{Pt}}(E_2)\} W(Q)}$$

$$= \sum_k \text{Re} \left\{ f_k(Q, E_1) + f_k(Q, E_2) \right\} \frac{4\pi r^2 \sin(Qr)}{W(Q)} \int_0^\beta (q_{\text{Pt}}(r) - q_{\text{ok}}) \frac{\sin(Qr)}{Qr} dr,$$ \hspace{1cm} (1)
\[
W(Q) = \sum_k c_k \Re \left[f_k(Q, E_1) + f_k(Q, E_2) \right],
\]

where \(E_\text{abs} > E_2 > E_1\), \(I(Q, E_i)\) is the coherent X-ray scattering intensity in electron units per atom, \(c_k\) the atomic fraction of the \(k\)-element, \(\varrho_{Ptk}(r)\) the radial density function of the \(k\)-element around Pt at a radial distance of \(r\), and \(\varrho_0\) the average number density of the \(k\)-element in the system. \(\Re\) denotes the real part of the values in the brackets. Thus, the environmental radial distribution function (RDF) for Pt is obtained by Fourier transformation of the quantity of \(Q \Delta f_{Pt}(Q)\) in (1):

\[
4\pi r^2 \varrho_{Pt}(r) = 4\pi r^2 \varrho_0 + \frac{2}{\pi} \int_0^\infty Q \Delta f_{Pt}(Q) \sin(Qr) \, dQ,
\]

where \(\varrho_0\) is the average number density in the system. Consequently, the environmental structure around Pt is obtained by measuring the energy dependence of the X-ray scattering intensity in the close vicinity of the Pt absorption edge.

Results and Discussion

Figure 3 shows the coherent scattering of amorphous Pt\(_{1-x}\)S\(_2\) in electron units per atom obtained by the ordinary X-ray scattering measurement with MoK\(_\alpha\) radiation. This profile is typical for an amorphous structure except for the increase in the small-angle X-ray scattering. This increase in intensity below \(Q = 15\) nm\(^{-1}\) is a known spurious effect due to the sensing of the primary beam by a detector. The effect has been checked by placing an additional slit system which narrows the incident and diffracted beams. Figure 4 shows two intensity profiles measured at incident energies of 11.262 and 11.532 keV. These two energies are 30 and 300 eV below the Pt L\(_{\text{III}}\) absorption edge (11.562 keV). Theoretical values of the anomalous dispersion terms for Pt and S used in the present work are found to agree well with the experimental ones at the lower energy side of the absorption edge [9]. Figure 4 also gives the intensity difference \(\Delta f_{Pt}(Q)\) from which the differential interference function \(Q \Delta f_{Pt}(Q)\) in (1) is obtained. The environmental RDF for Pt in amorphous Pt\(_{1-x}\)S\(_2\) is obtained by Fourier transformation, and the result is compared with the ordinary RDF in Figure 5. It may be worth noting that a direct comparison between the two curves is only possible for the values on the abscissa, because different weighting factors are used on the ordinate. The sharp and almost completely isolated first peak at 0.234 nm suggests the presence of a certain chemical short-range order in amorphous Pt\(_{1-x}\)S\(_2\). The fundamental structural unit of crystalline PtS\(_2\), illustrated in Fig. 6, consists of a Pt atom octahedrally surrounded by six S atoms, and these slightly distorted PtS\(_6\) octahedra share their edges so as to form a layered structure. S atoms belonging to adjacent layers are held together by Van der Waals forces, while there is a strong mixed covalent-ionic bond between nearest neighboring Pt and S pairs. The vertical lines in Fig. 5 indicate the peak positions expected in this crystal form [10].
Fig. 5. Ordinary radial distribution function (RDF) and environmental RDF determined from the differential intensity profiles in Figure 4. Vertical lines indicate the peak positions found in crystalline PtS$_2$ of CdI$_2$-type structure.

Fig. 6. Schematic diagram for the fundamental structural unit in crystalline PtS$_2$ composed of a Pt atom with six S atoms sharing the edges of slightly distorted octahedron.

tion, the first peak of the RDFs in Fig. 5 is attributed to Pt–S pairs. Then, the coordination number of the nearest neighboring S atoms around Pt is estimated to be 5.5. Therefore, it is plausible that a fundamental unit structure similar to that in the PtS$_2$ crystal prevails also in the amorphous state.

The structural parameters such as atomic distances and coordination numbers of amorphous materials have been successfully determined by the least squares variational method originally proposed by Narten and Levy [11]. According to Narten and Levy, the interference function is given by

$$Q_i(Q) = \sum_{j=1}^{N} \sum_{k} c_j f_j f_k N_{jk} \exp(-b_{jk} Q^2) \sin(Q r_{jk})$$

$$+ \sum_{\alpha=1}^{N} \sum_{\beta=1}^{N} c_{\alpha} c_{\beta} f_{\alpha} f_{\beta} 4\pi Q_0 \exp(-b_{\alpha\beta} Q^2)$$

$$QR_{\alpha\beta} \cos(Q R_{\alpha\beta}) - \sin(Q R_{\alpha\beta}) Q^2, \quad (3)$$

where N_{jk} is the number of type-k atoms around any type-j atom at the distance of r_{jk} and the value of b_{jk} is the mean square variation. The quantities of $R_{\alpha\beta}$ and $b_{\alpha\beta}$ correspond to the mean size and the variance of the boundary region. The first and second terms on the right hand side of (3) represent a discrete Gaussian-like distribution in the neighboring region and a continuous distribution with an average number density at long distances, respectively. The distance and coordination number for near-neighbors are refined by the least-squares calculation of (3) so as to reproduce two independent experimental interference functions by the AXS method for Pt and by the ordinary diffraction with MoKα radiation [12]. It should be kept in mind that this method is not a unique mathematical procedure, but the structural parameters in the near neighbor region can be quantified with a much higher reliability in a sense of the necessary condition at best. The non-linear least-squares program developed by Levy et al. [13] was slightly modified for convenience of the present analysis.

The least-squares variational method is usually carried out by iteration with the local structural information in a crystal as starting parameters. In the present case however, a difficulty appears for the peak at about 0.38 nm which is not recognized in crystalline PtS$_2$, as shown in Figure 5. Since this peak is observed in both environmental and ordinary RDFs and referring to the arrangement of the octahedral units, the peak at about 0.38 nm is hardly explained by Pt–S pairs. Thus, this peak should be attributed to the correlation of Pt–Pt pairs. The PtS$_6$ octahedra in crystalline PtS$_2$, as shown in Figure 5. Since this peak is observed in both environmental and ordinary RDFs and referring to the arrangement of the octahedral units, the peak at about 0.38 nm is hardly explained by Pt–S pairs. Thus, this peak should be attributed to the correlation of Pt–Pt pairs. The PtS$_6$ octahedra in crystalline PtS$_2$, as shown in Figure 7(a). The coordination number between the nearest neighboring Pt atoms is 6 at an average distance of 0.354 nm in crystalline PtS$_2$. When platinum disulfide compounds are prepared from aqueous solu-
Fig. 7. Schematic diagram of the near neighbor atomic configurations of the PtS₆ octahedral units; (a) edge-sharing linkage, (b) corner-sharing linkage.

The distance observed at about 0.38 nm allocating to the Pt–Pt correlation in the amorphous state enables us to suggest a corner sharing linkage between the octahedra, as shown in Figure 7(b). The maximum coordination number of Pt–Pt pairs is 3 for this linkage. It is apparent that the chemical composition PtS₄ is suggested when the PtS₆ octahedra are everywhere connected with the corner-sharing linkage. Thus, a calculation by least-squares variational fitting was carried out with starting parameters recognized in the crystalline structure and Pt–Pt pairs at about 0.38 nm. The resultant parameters are summarized in Table 1 together with those of the crystalline case. The uncertainty was also estimated from the variance-covariance matrix in the non-linear least-squares variational method and it is included in Table 1. The structural parameters listed in Table 1 reproduce both the difference and ordinary interference functions \(Q \Delta i_{\text{Pt}}(Q) \) and \(Q i(Q) \), as shown in Figure 8. This agreement is evidence that the present approach basically works very well. It is found in Table 1 that a Pt atom is surrounded with 5.3 S atoms at 0.235 nm in amorphous Pt₁₋ₓS₂. The atomic distances of the first and third nearest neighboring S–S pairs are estimated to be 0.300 and 0.353 nm, respectively. No significant difference is detected in these structural parameters the crystalline and amorphous states. This indicates that the fundamental structural unit of PtS₆ octahedron remains in amorphous Pt₁₋ₓS₂. On the other hand, it should be stressed that the structure of amorphous Pt₁₋ₓS₂ is characterized by an additional correlation of the second nearest neighboring Pt–Pt pairs. The number of the first nearest neighboring Pt–Pt pair is 4.4, which is less than 6.0 in PtS₂ crystal.
The second nearest neighboring Pt–Pt pair at 0.398 nm, which is not present in the PtS₂ crystal, shows a coordination number of 1.1. As mentioned above, the first and second nearest neighboring Pt–Pt pairs correspond to an edge sharing linkage (6 Pt–Pt pairs) and a corner sharing linkage (3 Pt–Pt pairs), respectively. The molar ratio of Pt atoms with the edge-sharing octahedron to those with the corner-sharing one is then 2:1 (= 4.4/6:1.1/3). The chemical composition of the present sample, which includes these two kinds of linkage of octahedra can be roughly estimated as follows. When considering that the edge-sharing and corner-sharing octahedra spatially coexist with the molar ratio of 2 to 1, the average value of the composition leads to Pt₀.₇₅S₂ (≡ PtS₂ + 1/2 PtS₄)/2), namely, x = 0.25 in Ptₙ₋ₓS₂. This value coincides well with the observed one in the present TG analysis. It is supposed from the structural point of view that the open structure associated with such a deficiency of Pt atoms is probably one of the significant factors in determining the catalytic and electrochemical properties of amorphous Pt₁₋ₓS₂.

Acknowledgements

The authors would like to express their gratitude to Prof. M. Nomura, Photon Factory, National Laboratory for High-Energy Physics for his kind help on the AXS measurements. This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 05 750 591).