121Sb and 35Cl NQR in RCN • SbCl5 Complexes

G. K. Semin, S. I. Kuznetsov, A. M. Raevsky, and E. V. Bryukhova
Institute of Organo-Element Compounds, Academy of Sciences of Russia, Moscow, 117813 Russia

Z. Naturforsch. 49a, 630–634 (1994); received December 31, 1993

35Cl and 121Sb NQR spectra of RCN • SbCl5 complexes with R = Et, n-Pr, i-Pr, n-Bu, n-C6H14, Cl(CH2)3, C6H4CH2, Ph, Cl, Me, CCl3 were measured and/or refined at 77 K. Redistribution of the "transferred charge" in the SbCl5 fragment of the complexes under study was investigated. The existence of a specific region of dispersion of the electron-nuclear motions (DENM) in RCN • SbCl5 complexes was established.

Key words: Complexes RCN • SbCl5, NQR, 121Sb, 35Cl, dispersion of the electron-nuclear motions (DENM).

1. Introduction

The dependence of the nuclear quadrupole coupling constant \(e^2Q_{zz}\) on the ionization potential (I) of the oxygen lone pair in the antimony pentachloride complexes with oxygen containing ligands (L0) has been shown to possess a logarithmic singularity in the vicinity of the energy of affinity to the electron of the antimony atom (I0) of the rearranged ClSb fragment \[1\]. This singularity is determined by energy fluctuations \((\Delta I)\) in the vicinity of \(I_0\) neighborhood.

Additionally, energy fluctuations, \(\Delta I\), predetermine the shape fluctuations of the electron density distribution at the antimony atom in the complex, which can be specified by the asymmetry parameter \(\eta\) of the electric field gradient (EFG) tensor \(\eta = \frac{(q_{xx} - q_{yy})}{q_{zz}}\), i.e. \(\Delta I \approx \Delta \eta\).

One finds the general form of dependence \(\eta = \eta(e^2Q_{zz})\) using a known approximate equation

\[
\eta = \frac{d\eta}{dq_{zz}} q_{zz}.
\]

(1)

Assuming \(\eta = (\eta_0 - \eta)\) and \(\eta_{zz} = (q_{zz} - q_{zz0})\) and solving (1) as a differential equation with separable variables, after some transformations one gets

\[
(e^2Q_{zz} - e^2Q_{zz0}) \cdot (\eta_0 - \eta) = B \delta.
\]

(2)

Equation (2) is valid if \(B\) is a constant and \(\delta = 1\) \((e^2Q_{zz0} \) and \(\eta_0\) are at the origin). If the fluctuation spectrum is assumed to be continuous or rectangular, one can perform a simple integrated averaging for \(e^2Q_{zz}\) observed:

\[
e^2Q_{zz} = \frac{1}{2\Delta \eta} \int_{-\Delta \eta}^{\Delta \eta} \left[e^2Q_{zz0} + B \cdot \delta \right] d\eta
\]

\[
e^2Q_{zz} = e^2Q_{zz0} + B \cdot \delta \ln \frac{\eta - (\eta_0 + \Delta \eta)}{\eta - (\eta_0 - \Delta \eta)}.
\]

(3)

In the interval \(\eta_0 \pm \Delta \eta\),

\[
\left| \frac{\eta - \eta_0}{\Delta \eta} \right| = th \frac{\Delta \eta}{B} \frac{e^2Q_{zz} - e^2Q_{zz0}}{B}.
\]

(4)

Here \(\Delta \eta\) is the depth of the fluctuation modulation; \(e^2Q_{zz}\) is the average value of the maximum EFG component along the ClSb—Sb…N—R axis corresponding to its observed value. To corroborate the validity of (3) there were studied 121Sb NQR spectra of RCN • SbCl5 complexes, where most derivatives belonged to the alkyl series.

2. Experimental

The NQR spectra of antimony and chlorine in the RCN • SbCl5 complexes were merely known for substances with \(R = Me, Cl, Ph, CCl3\) \[2-5\]. We remeasured those spectra (except the complex with \(R = CCl3\)) to refine the data obtained earlier. Additionally, spectra of RCN • SbCl4 complexes with \(R = Et, n-Pr, i-Pr, n-Bu, n-C6H14, Cl(CH2)3, C6H4CH2, Ph\) were measured for the first time. The 35Cl NQR spectrum for the n-C6H5 • SbCl5 complex was also measured. All experiments were carried out at

932-0764 / 94 / 0400-0630 $ 01.30/0. – Please order a reprint rather than making your own copy.
Table 1. 121Sb NQR spectral parameters of RCN • SbCl$_5$ complexes at 77 K.

<table>
<thead>
<tr>
<th>NN</th>
<th>R</th>
<th>$e^2 Q_{zz}$, MHz</th>
<th>η, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-C5H${11}$</td>
<td>179.874</td>
<td>12.12</td>
</tr>
<tr>
<td>2</td>
<td>C$_2$H$_5$</td>
<td>183.267</td>
<td>-0.2</td>
</tr>
<tr>
<td>3</td>
<td>C$_2$H$_5$</td>
<td>187.085</td>
<td>9.3</td>
</tr>
<tr>
<td>4</td>
<td>Cl(CH$_2$)$_2$</td>
<td>210.838</td>
<td>9.0</td>
</tr>
<tr>
<td>5</td>
<td>i-C$_3$H$_7$</td>
<td>193.119</td>
<td>8.0</td>
</tr>
<tr>
<td>6</td>
<td>n-C$_4$H$_9$</td>
<td>179.180</td>
<td>2.07</td>
</tr>
<tr>
<td>7</td>
<td>Cl</td>
<td>235.930</td>
<td>1.15</td>
</tr>
<tr>
<td>8</td>
<td>C$_6$H$_4$CH$_2$</td>
<td>184.176</td>
<td>-0.6</td>
</tr>
<tr>
<td>9</td>
<td>C$_6$H$_5$</td>
<td>174.230</td>
<td>0.825</td>
</tr>
<tr>
<td>10</td>
<td>Cl$_3$C</td>
<td>199.64</td>
<td>36.0</td>
</tr>
</tbody>
</table>

* Our refined data. b Data from [4].

77 K using an ISSh-2-13 pulse NQR spectrometer. The accuracy in measuring spectral line centers was \(\approx 3\) kHz for Cl and \(\approx 5\) kHz for Sb.

3. Results and Discussion

In accordance with the obtained spectra we found a complex molecule to occupy one general or one special position in a crystal. The only exception is EtCN • SbCl$_5$; for this substance there are two crystallographically independent complex molecules in general position. 121Sb $e^2 Q_{zz}$ and \(\eta\) values are listed in Table 1. 35Cl NQR spectra are given in Table 2. The assignment of the 35Cl NQR lines to the axial or equatorial molecular positions were made using the signal intensity ratios or temperature dependence of the 35Cl NQR frequencies. As is known [5], the 35Cl NQR signal for the axial chlorine atom is the last one to disappear with increasing temperature. There was also observed a characteristic shift of the 35Cl NQR frequency for the side chain chlorine atom in the Cl(CH$_2$)$_2$CN • SbCl$_5$ complex (from 34.11 MHz in Cl(CH$_2$)$_2$CN to 35.55 MHz in the complex).

3.1. 121Sb NQR

The relation between 121Sb $e^2 Q_{zz}$ and \(\eta\) for the complexes under study (see Fig. 1) was shown to be well described by an equation of type (3) with the following parameters: $e^2 Q_{q_0} = 200.678$ MHz, $\eta_0 = 6.222$%, $\Delta \eta = 4.894$% and \(\beta = 85.795\) MHz%. In Fig. 2 $e^2 Q_{q_i}$ ($i = x, y$) is plotted against $e^2 Q_{zz}$; solid lines ($\delta = +1$) and dashed lines ($\delta = -1$) are solutions of (3); dots are experimental data. From the intersection of the curves with line \(\eta = 0\) in Fig. 2 it follows that the x and y axes should be changed (since according to the definition $|q_{xx}| < |q_{yy}| < |q_{zz}|$), which is tantamount to the sign change of \(\eta\) (see Fig. 1 and the relevant column in Table 1). As is seen from Fig. 1, five points for complexes with R = Me, Et, i-Pr, n-Bu and Cl(CH$_2$)$_2$ are in the region $(\eta_0 \pm \Delta \eta)$ and should be considered as dynamic ones. The nature of fluctuations, which reflects the existence of a specific $(\eta_0 \pm \Delta \eta)$ region, can be understood if we consider the following model.

1. If the electron density distribution on the antimony atom can possess several plausible configurations corresponding to the relevant potential wells, then transitions between those configurations might be tunnelling [6].
Fig. 1. Dependence of \(e^2Q_{zz} \) on the EFG asymmetry parameter [see (3)]. Notations are the same as in Table 1.

Fig. 2. Dependence (3); coordinate axes \(eQ_{jil}(e^2Q_{zz}), i = x, y \). Notations the same as in Table 1.

Fig. 3. Dependence \(\bar{v}_{\text{eq}}(v_{ax}) \). Notations the same as in Table 2. ---: see (9); - - - : see (10).

Fig. 4. Dependence \(v_{ax} \) and \(\bar{v}_{\text{eq}} \) on their difference \(\Delta_{\text{eq}} = v_{\text{eq}} - v_{ax} \). Notations the same as in Table 2. ---: see (12) and (13); - - - - : see (14) and (15).
2. This will, except for a resonance tunnelling, result in an essential increase in the correlation time (by 10^5–10^6 times) of the complete electron transfer upon tunnelling [7], which in its turn might bring the speeds of the electron motion into the region of characteristic speeds of the atomic nuclei motions.

3. The stochastic character of mutual motions of nuclei and electrons taking part in nonlinear vibrational motions is responsible for an additional mechanism for the EFG tensor averaging [8].

One can make an attempt to roughly estimate the characteristic times of the tunnel electron transfer. Since relative changes in the asymmetry parameter, $(\eta - \eta_0)/\eta$, and the average dynamic dipole moment, $\bar{\mu}$, with changing configurational electron distribution are due to the same reasons, it is natural to expect that

$$\bar{\mu} \sim (\eta - \eta_0)/\eta. \quad (5)$$

However, according to [9]

$$\bar{\mu} \sim \text{th} |\delta E/kT|, \quad (6)$$

where δE is the tunnel (inversion) splitting of the principal electron term. Then, comparing (4) and (6) we get

$$\delta E = \left| \frac{\Delta \eta}{B} (e^2 Q q_{zz} - e^2 Q q_0) kT \right| = \delta E_0 \left| \frac{e^2 Q q_{zz}}{e^2 Q q_0} - 1 \right|. \quad (7)$$

Changes in δE and the correlation time of the complete electron transfer, τ, are related by [7]

$$\tau = \frac{\pi h}{\delta E} = \tau_0 \left| \frac{e^2 Q q_{zz}}{e^2 Q q_0} - 1 \right|^{-1}. \quad (8)$$

The τ-values for the above five indicated complexes, whose quadrupole coupling constants are in the $(\eta_0 \pm \Delta \eta)$ region in Fig. 1, correspond to characteristic times of the atomic nuclei motions (10^{-10}–10^{-14} sec).

3.2. $^{35}\text{Cl} \text{ NQR}$

Redistribution of the so called “transferred charge” in the SbCl$_5$ fragment of the antimony pentachloride complexes under study is of essential interest. In the $^{35}\text{Cl} \text{ NQR}$ spectra of these complexes one can unambiguously assign NQR frequencies to axial (v_{ax}) or equatorial (v_{eq}) chlorine atoms (see Table 2). It also appeared to be possible to obtain a correlation equation relating changes in v_{ax} and v_{eq} (here v_{eq} is the arithmetic average over observed frequencies in the multiplet), whose graphical solution is depicted in Figure 3. In this case the spectra of the EtCN · SbCl$_5$ complex are represented by two sets of lines considered separately.

For the series $R = \text{Alk}$ (to the exclusion of the CCl$_3$ point) there was found the equation

$$v_{eq} = (34.427 - 0.324 v_{ax}) \pm 0.03 \text{ MHz}; \quad n = 7, r = 0.98. \quad (9)$$

For three other points ($R = \text{Ph, C}_6\text{H}_4\text{CH}_2, \text{Cl}$), an estimate is

$$v_{eq} = (38.766 - 0.476 v_{ax}) \pm 0.02 \text{ MHz}; \quad n = 3, r = 0.996. \quad (10)$$

As follows from (9) and (10), the charge redistribution along the axial and equatorial directions is inversely proportional, charge density changes on the equatorial atoms being 2–3 times smaller than those on the axial ones and opposite in sign. One comes to analogous conclusions when considering the dependence of v_{eq} and v_{ax} on their difference $A_{ea} = v_{eq} - v_{ax}$ (see Fig. 4):

$$v = v_0 + K A_{ea}, \quad (11)$$

where v_0 is referred to a hypothetical complex with $v_{ax} = v_{eq}$.

For the alkyl series, the equations relating v_{eq} and v_{ax} to A_{ea} are

$$v_{ax} = (26.004 - 0.753 A_{ea}) \pm 0.025 \text{ MHz}; \quad n = 7, r = 0.999, \quad (12)$$

$$v_{eq} = (26.004 + 0.246 A_{ea}) \pm 0.025 \text{ MHz}; \quad n = 7, r = 0.990. \quad (13)$$

Estimated values for the series Cl, C$_6$H$_4$CH$_2$ and Ph are

$$v_{ax} = (26.261 - 0.677 A_{ea}) \pm 0.013 \text{ MHz}; \quad n = 3, r = 0.9996, \quad (14)$$

$$v_{eq} = (26.261 - 0.323 A_{ea}) \pm 0.013 \text{ MHz}; \quad n = 3, r = 0.9983. \quad (15)$$

4. Conclusions

As is seen from (1), maximum change in the increment of $A e^2 Q q_{zz} = (e^2 Q q_{zz} - e^2 Q q_0)$ must occur at η_0, which corresponds to the maximum charge separation between the donor and acceptor parts of the complex. A recharging between the complex parts must occur after passing the η_0 point.
However, as follows from (3), the "recharging" mechanism differs from a simple sign change of the SB...N induced coordination bond dipole. The "recharging" does not begin at η_0, but at $(\eta_0 - \Delta \eta)$. Near this point, inside the $(\eta_0 \pm \Delta \eta)$ area, there occurs a levelling of the charges localized on the atoms participating in the Sb...N coordination bond, so that the additional gradient, $\Delta e^2 Q q_{zz} = (e^2 Q q_{zz} - e^2 Q q_0)$, at η_0 becomes zero. In the interval $\eta_0 = (\eta_0 + \Delta \eta)$, $\Delta e^2 Q q_{zz} = (e^2 Q q_{zz} - e^2 Q q_0)$ gradually increases, but is opposite in sign.

The whole process is accompanied by efficient dynamic motions, since characteristic correlation times of atomic and electron motions overlap upon tunnelling.

As there are obviously more than two, deformational motions in the octahedral complexes, we have to do with stochastic dynamics of a set of vibration systems, which, in general, are not linear. The latter results in either a continuous or a rectangular spectrum of low frequency vibrations of the electron-nuclear systems. That is why (3) has such a good descriptive ability.

Thus, there has been established the existence of a specific region where Born-Oppenheimer rules are violated and which can be called the region of dispersion of the electron-nuclear motions (DENM) in RCN·SbCl$_5$ complexes.

The existence of the DENM region must result in anomalies in the chemical behavior of both parts of the complex which, first of all, bring about a sharp change in the energetics of chemical reactions proceeding with participation of these complexes.