A Molecular Beam Fourier Transform Microwave Spectrometer in the Range 26.5 to 40 GHz. Tests of Performance and Analysis of the D- and 14N-Hyperfine Structure of Methylcyanide-d1

I. Merke, W. Stahl, and H. Dreizler

Z. Naturforsch. 49a, 490–496 (1994); received November 27, 1993

We present the set-up of a molecular beam Fourier transform microwave spectrometer in the range from 26.6 to 40 GHz. As a test we investigated the deuterium hyperfine structure of deuteracetonitrile, DCH, CN. It is also shown, that the spectrometer can be used to measure highly resolved rotational spectra of van der Waals complexes.

Introduction

Our pulsed molecular beam (MB) Fourier transform microwave (FTMW) spectrometer for the range from 3 to 26.5 GHz [1, 2] and its modified version for air pollution measurements [3] are very sensitive and accurate tools for the assignment of rotational spectra of molecules and van der Waals complexes and some of their isotopomers in natural abundance. This encouraged us to add another spectrometer for the range from 26.5 to 40 GHz. The enlarged range helps to exploit the information contained in rotational spectra which extend over the microwave and millimeter wave region.

We give tests of the spectrometer with carbonylsulfide, OCS, and two van der Waals complexes and report, as an example, the investigation of the D- and 14N-hyperfine structure in the rotational spectrum of methylcyanide-d1. The measurements in the range of the spectrometer proved to be essential.

Set Up

The first MB-FTMW spectrometer has been described by Balle and Flygare [4]. Our set up is given in Figure 1. Since in the region from 26.5 to 40 GHz some MW components are not available and/or very expensive, the polarizing frequency \(v_p \) is produced by frequency doubling.

The synthesizer 1 produces frequencies \(v_v \) up to 20 GHz in 1 kHz steps with a power level of up to +20 dBm. It is referenced to the DCF 77 (Mainflingen) standard frequency by the receiver 34, quartz oscillator 35, and the frequency multiplier 36. Via the power divider 2 the power is guided into the polarizer and superheterodyne detection branches.

The single sideband modulator 5 produces a frequency of \(\frac{1}{2} v_v = v_v + 160 \text{ MHz} \) and suppresses the carrier by 15 dB in a sequence determined by the single pole double throw (SPDT)-PIN switch 6. Thereby polarizing pulses are formed. After amplification 7 the frequency is doubled 8 and again amplified 9. The power meter 11 connected to the directional coupler 10 allows, together with the attenuators 3 and 4, an automatic adjustment of the power. This adjustment is made under continuous wave condition and kept constant when pulses are produced. The SPDT PIN switch 12, one output terminated 13, helps in pulse formation and increases isolation during the detection period, as a leakage to the detection branch should be minimized to avoid perturbing signals. The PIN switch 14 guides the polarizing pulses into the Fabry-Perot cavity 15 by the antenna 16. The antenna 18, detector 19, and oscilloscope 20 are used for the adjustment of the cavity 15 with the encoder mike 21. The A/D converter 22 is necessary for automatic broadband scanning.

The transient emission produced in the cavity is directed to the detection system with the PIN switch 14. Properly synchronized a supersonic molecular beam is produced with the nozzle 17.

After preamplification 23 the transient signal is down-converted to a band around 320 MHz. The local power of frequency \(v_v \) is adjusted with 1 under
control of the power meter 26 via the directional coupler 25.

As usual in similar systems, the down converted transient signal is amplified 27, 29, and filtered 28. With the signal generator 31 and mixer 30 the signal is down converted a second time to a frequency band depending on the local frequency. This is usually chosen to be 317.5 MHz, yielding a second intermediate frequency of 2.5 MHz.

The transient signal is digitized in the transient recorder 32 combined with a personal computer for averaging and experiment control. The necessary pulse sequences are produced with the pulse generator 33 under program control by 32. The sequences are given in Figure 2.

In Fig. 2 the timing diagram for the production of MW pulses by the switches 6, 12 and 14 is given. In addition the period of the connection of the polariza-
Fig. 2. Timing diagram of MW and molecular beam pulses. ①: TTL-Signal of PIN-switches 6 and 12 of Fig. 1; logic high, left port of 6 and port ① of 12 are open. ②: TTL-Signal of PIN-switch 14 of Fig. 1; logic high, port ② is open. The TTL signals ① and ② are logically inverted with respect to ① and ②. When TTL-signals ① and ② are high, the polarisation branch is connected to the resonator. When ② is high, the resonator is connected to the detection branch. ③: Signal logic high: beam nozzle is open. M: molecular response signal. The measurement without a molecular beam is used to compensate the influence of the MW system. X is a delay which determines the repetition rate of the experiment cycles. Not to scale.

In Fig. 3 we give a drawing of the mechanical construction of the cavity. The quality factor is $Q = 30000$.

One mirror 1 of the cavity is placed inside a planar flange 2 of the vacuum tank 3. The nozzle 4 is mounted near the center of the mirror (distance 25 mm), the antenna 5 in the center of the mirror. The MW is introduced by a vacuum tight connector 6 on which the antenna 5 is positioned. The second mirror is arranged in a way that the cylinder symmetry of the cavity is maintained under adjustment of the cavity length.

The second mirror 7 is fixed on a ball bearing carriage 8 moving on two cylindrical precision axes of 12 mm diameter with a maximum displacement of 37 mm. The carriage 8 is mounted between two rings 9. The rings are held parallel by two rods 10. This mirror unit is mounted on the flange 2 by four rods 11. The rods 10, 11, and rings 9 are manufactured from PVC to reduce reflections of microwave radiation. Using an encoder mike 12 the mirror is adjusted for resonance of the cavity. The mirror is drawn back by two springs.

The described construction is the most simple arrangement we tested. Only some dimensions of the parts (mirror surface, thickness of the rings, length of the rods) must be manufactured precisely.

Test of Performance

As usual in MW spectroscopy, carbonyl sulfide, OCS, and its isotopomers were used as test molecules.

In Fig. 4 the transition $J = 3 - 2$ of 18O13CS recorded in 1300 s with an experiment repetition rate of 5 Hz is shown. At room temperature this transition would have an absorption coefficient of $\alpha = 4 \cdot 10^{-9} \text{ cm}^{-1}$. It should be noticed that the absorption coefficient is not a correct measure for sensitivity for this type of spectroscopy. It is given just for comparison with MW Stark spectroscopy. It should also be mentioned that with a waveguide FTMW spectrometer we reached a higher sensitivity as shown in Fig. 3 of [5].

The line width is demonstrated in Fig. 5 for the $J = 3 - 2$ transition of 18OCS in natural abundance.
Here we obtained a half width at half height (HWHH) of 2.8 kHz. For the $J = 1-0$ transition we obtained with the MB-FTMW spectrometer for the 3 to 26 GHz region [2] a HWHH of 1 kHz at 11.8 GHz. In the present case the transit time with 0.96 ms contributes with $\Delta v_T = 1$ kHz more to the linewidth than the transit time of 1.5 ms and $\Delta v_T = 0.7$ kHz does for the $J = 1-0$ transition. If one speculates that the linewidth is predominantly determined by a Doppler broadening due to velocity inhomogeneities of the beam, the line width should increase by a factor 3 for lines near 34.2 GHz compared to lines near 11.8 GHz. It should be stated that a precise understanding of the contributions to the linewidth for the experimental situation is presently not available.

In Fig. 6 and Fig. 7 we present recordings of spectra of van der Waals complexes. As the low beam temperatures favor the production of van der Waals complexes, the beam spectrometers also provide a tool for these species. In Fig. 6 a spectrum of the OC34S–Ar complex: $J_{K-K^*} = 3_{31}-2_{21}$ is presented. Figure 7 shows a spectrum $J_{K-K^*} = 5_{05}-4_{04}$ of the NH$_3$–CO$_2$ van der Waals complex.

Deuteroacetonitrile, DCH$_2$CN

Acetonitrile is very abundant in interstellar space. Because of its high dipole moment the rotational spectrum is strong and is used as a probe of temperature and density of molecular clouds. Because of its intense spectrum it seems possible that the monodeuterated species could also be detected.

The ground state rotational spectra of DCH$_2$CN (main, 12C, and 15N isotopomers) were investigated.
recently by Le Guennec et al. [6]. The authors determined rotational and centrifugal distortion constants and an equilibrium structure.

Because DCH$_2$CN is a light near symmetric top molecule, the low J-transitions, which contain an important information on the quadrupole coupling constants, occur at relatively high frequencies ($J'-J: 2-1$ at 35 GHz). Because of the smallness of the D and 14N coupling effects, which were within the Doppler broadening under static gas conditions, the coupling
DCH$_2$CN sample was kindly provided by J. Demaison, Lille. It was used without further purification as a 1% mixture in argon at a stagnation pressure of about 100 kPa.

Analysis

The observed rotational transitions of DCH$_2$CN were split due to nitrogen-14 and deuterium quadrupole hyperfine coupling. An example is given in Figure 8. For the analysis of the hyperfine structure a first order calculation in the $I_1 + I_2 = I, I + J = F$ coupling scheme was used. This coupling scheme is not really adequate for very differently coupling nuclei. So the intermediate quantum number I should be regarded more as a label than a physically significant quantum number. The hyperfine components as well as the hyperfine free line centers are given in Table I. The results of a fit are summarized in Table 2. It should be pointed out that the deuterium coupling constants could be obtained only because of the high resolution in the 35 GHz region.

Discussion

For comparison with other molecules it is useful to calculate the coupling constants in coordinates, where one of them is aligned with the respective bond axis and, assuming a cylindrical symmetry, the others are perpendicular to it. For the C–N as well as the C–D bond this transformation corresponds to a rotation around the c-axis. Therefore χ_{cc} is not affected by the rotation and is defined to be χ_{yy}. Since the coupling tensor is traceless, and due to a cylindrical symmetry around the bond axis $\chi_{xx} = \chi_{yy}$, one obtains $\chi_{zz} = -2\chi_{xx} = -2\chi_{cc}$ without reference to the structure.

Using the data given in Table 2 yields $\chi_{zz}(^{14}\text{N}) = -4.2166(58)$ MHz and $\chi_{zz}(\text{D}) = 0.191(11)$ MHz. This value is in good agreement with theoretical calculations of Huber [7] resulting in $\chi_{zz}(\text{D}) = 0.1741$. The author also predicted 4.3% asymmetry of the C–D bond for methylcyanide, which justifies the assumption that the tensor is cylindrical symmetric. Comparing the results with the experimental data of CH$_3$CN: $\chi_{zz}(^{14}\text{N}) = -4.224(4)$ MHz [8] and of CD$_3$CN: $\chi_{zz}(^{14}\text{N}) = -4.2292(6)$ MHz and $\chi_{zz}(\text{D}) = 0.1696(45)$ MHz [9] we also find a good agreement. The $\chi_{zz}(\text{D})[9]$

Experimental

Using the apparatus described above we recorded the a-type $J = 2 \rightarrow 1$ transitions of DCH$_2$CN in the 35 GHz range. Additionally we also measured the $J_{k-1,k+1} = 1_{01} \rightarrow 0_{00}$ transition with our MB-FTMW spectrometer [1, 2] in the 17 GHz region. The constants could not be determined by conventional microwave spectroscopy. With the Q-band beam spectrometer we were able to determine the quadrupole coupling constants. MB-FTMW spectroscopy provides sufficient resolution even in this frequency region.
of CD$_3$CN was also obtained with the assumption of a cylindrical bond but using the 1–0 transition and the molecular structure.

1. I. Merke et al. · A Molecular Beam Fourier Transform Microwave Spectrometer

Table 1. Rotational transitions of deuteroacetonitrile. v: measured frequency/MHz, $\Delta v = v_0 - v$: observed quadrupole splitting/MHz, Δv_0: difference between observed and calculated frequency of the hyperfine component/kHz. v_0: hypothetical unsplit line frequency/MHz.

<table>
<thead>
<tr>
<th>$J'_{k-k'}$</th>
<th>$J''_{k-k''}$</th>
<th>$F' - F''$</th>
<th>v</th>
<th>Δv</th>
<th>Δv_0</th>
<th>v_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10_1</td>
<td>00_0</td>
<td>1 2-2 2</td>
<td>17369.833</td>
<td>2.107</td>
<td>-2</td>
<td>17367.726 (1)</td>
</tr>
<tr>
<td>1 1-1</td>
<td>00_0</td>
<td>1 2-2 2</td>
<td>17369.949</td>
<td>0.223</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1 3-3 2</td>
<td>17369.740</td>
<td>0.214</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1-1</td>
<td>11_1</td>
<td>17367.931</td>
<td>0.205</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 1-1</td>
<td>11_0</td>
<td>17366.675</td>
<td>-1.051</td>
<td>-3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 2-2</td>
<td>17366.669</td>
<td>-1.057</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1-1</td>
<td>11_1</td>
<td>17366.657</td>
<td>-1.069</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. 14N- and D-Quadrupole Coupling Constants of DCH$_2$CN. Fitparameter: $\lambda_{ab}(^{14}$N), $\lambda_{bb}(^{14}$N), $\lambda_{ab}(D)$, $\lambda_{bb}(D)$ and v_0 the hypothetical unsplit line center. Rotational constants were fixed at the values given in [6]. Standard errors are given in units of the least significant digit. N is the number of all fitted hyperfine components. σ is the standard deviation of the lines in the fit.

<table>
<thead>
<tr>
<th>$\lambda_{ab}(^{14}$N)</th>
<th>$-4.2183(23)$ MHz</th>
<th>$\lambda_{ab}(D)$</th>
<th>$-0.0562(54)$ MHz</th>
<th>$\lambda_{bb}(^{14}$N)</th>
<th>$0.1516(51)$ MHz</th>
<th>$\lambda_{bb}(D)$</th>
<th>$0.191(11)$ MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>3.8 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Because our coupling constants in bond axes were achieved independently of structural informations they may be used to confirm the molecular structure. Therefore the rotation angles ϕ between the a-axis and the bond axes were calculated from the r_σ-structure reported in [6]. For the C–N axis, ϕ was found to be 1.795°, for the C–D axis ϕ is 68.102°. Using the well known transformation [10]

$$\lambda_{ab} = \lambda_{xx} \sin^2 \phi + \lambda_{zz} \cos^2 \phi,$$

one obtains $\lambda_{ab}(^{14}$N) = -4.210 MHz, $\lambda_{bb}(^{14}$N) = 2.110 MHz, $\lambda_{ab}(D) = -0.0561$ MHz, $\lambda_{bb}(D) = 0.1515$ MHz which is in good agreement with the experimental results and confirms the r_σ-structure of the molecule.

Acknowledgements

We thank the members of our group especially Dr. J.-U. Grabow and Dr. N. Heinkeing for help and discussions. Without the valuable help of our mechanic workshop under Mr. K.-D. Will the spectrometer would never have come to a successful operation. We further thank Prof. Dr. J. Demaison for providing the DCH$_2$CN sample. Our work was funded by the Deutsche Forschungsgemeinschaft, the Fonds der Chemie and the Land Schleswig-Holstein.