Dielectric Properties of Mesomorphic n-TPEB’s in Isotropic Phase

J. Jadżyn, G. Czechowski, and B. Żywucki
Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań (Poland)

C. Legrand
Centre Hyperfréquences et Semi conducteurs, Université de Lille I, 59655 Villeneuve d’Ascq (France)

P. Bonnet
Laboratoire de Chimie Théorique, Université de Nancy I, 54506 Vandoeuvre-lès Nancy (France)

R. Dąbrowski
Institute of Chemistry, Military Technical Academy, 01-489 Warsaw (Poland)

Z. Naturforsch. 48a, 871-874 (1993); received May 29, 1993

Dielectric relaxation studies have been performed for the isotropic phase of a series of mesogenic molecules of 1-[3-n-alkyl-biphenyl]-2-[4-isothiocyanatophenyl]ethane, C$_{n}$H$_{2n+1}$-CH$_{2}$CH$_{2}$-N=C=S (n-TPEB), for $n=7$, 8 and 9. Two Debye-type dielectric absorption bands have been interpreted as corresponding to the rotation around the short and long molecular axis.

Key words: Dielectric relaxation; Molecular dynamics; Mesomorphic molecules; Relaxation time; Activation energy.

Introduction

Dielectric relaxation studies provide essential data on molecular dynamics in liquids crystals [1–6]. Such data are very actual because of the increasing number of computer simulations of the molecular dynamics of such substances.

In this paper we present the results of dynamic electric measurements performed for a new class of mesomorphic molecules:

$$\text{CnH}_{2n+1}\rightarrow\text{CH}_{2}\text{CH}_{2}\rightarrow\text{N=C=S (n-TPEB)}$$

For $n \geq 4$, the compounds show the following sequence of phases: isotropic ($\sim 130^\circ C$) nematic ($\sim 100^\circ C$) smectic B. For $n=4$ and 5 the smectic phase appears as the monotropic one.

The measurements have been performed for three members of n-TPEB’s: $n=7$, 8 and 9 in their isotropic phase.

Experimental

The dielectric relaxation measurement devices are two Hewlett-Packard impedance analyzers HP 4192 A (5 Hz to 13 MHz) and HP 4191 A (1 MHz to 1 GHz), piloted by an HP87 computer. They allow automatic measurements of the complex permittivity, $\varepsilon^{*}(\omega)=\varepsilon'(\omega)-i\varepsilon''(\omega)$, of the sample [7, 8]. The measuring cell is a parallel plate capacitor located at the end of a coaxial line.

Results and Discussion

Figure 1 shows the variation of the electric permittivity ε' and the dielectric loss factor ε'' of n-TPEB’s as a function of frequency of the measuring electric field at
Fig. 1. Real (ε') and imaginary (ε'') parts of the complex permittivity of isotropic n-TPEB's against the frequency of the measuring electric field.

<table>
<thead>
<tr>
<th>t, °C</th>
<th>7-TPEB</th>
<th>8-TPEB</th>
<th>9-TPEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>138°</td>
<td>1.18</td>
<td>1.28</td>
<td>1.24</td>
</tr>
<tr>
<td>145°</td>
<td>1.15</td>
<td>1.25</td>
<td>1.23</td>
</tr>
<tr>
<td>150°</td>
<td>1.13</td>
<td>1.22</td>
<td>1.22</td>
</tr>
<tr>
<td>135°</td>
<td>1.28</td>
<td>1.22</td>
<td>1.28</td>
</tr>
<tr>
<td>140°</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>145°</td>
<td>1.22</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>132°</td>
<td>1.13</td>
<td>1.11</td>
<td>1.13</td>
</tr>
<tr>
<td>136°</td>
<td>0.877</td>
<td>1.27</td>
<td>1.37</td>
</tr>
<tr>
<td>140°</td>
<td>0.877</td>
<td>1.19</td>
<td>1.25</td>
</tr>
<tr>
<td>145°</td>
<td>0.883</td>
<td>1.11</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Table 1. The amplitude (s_i) and relaxation time (τ_i) of dielectric relaxation in isotropic n-TPEB's.

$$\varepsilon' (\omega) = \varepsilon_\infty + \frac{2}{\sum_{i=1}^{2} s_i \frac{1}{1 + \omega^2 \tau_i^2}},$$

$$\varepsilon'' (\omega) = \sum_{i=1}^{2} s_i \frac{\omega \tau_i}{1 + \omega^2 \tau_i^2},$$

where s_i and τ_i denote, respectively, the amplitude and the dielectric relaxation time for the corresponding Debye-type absorption band (I or II). The amplitude s_i is the difference between the static and high frequency values of the permittivity, $\varepsilon_\infty - \varepsilon_\infty$, related to a given relaxation process. The relaxation time, τ_i, is related to the critical frequency f_{ci}, i.e. to the frequency which corresponds to a maximum of the dielectric loss: $2\pi f_{ci} \tau_i = 1$.

Solid lines in Figs. 1 and 2 are the best fittings of the theoretical dependences described by (1) to the experimental data. The values of the parameters s_i and τ_i resulting from the fitting are given in Table 1.
Figure 3 shows the temperature dependence of the amplitude s_i of the two bands of absorption. The dependencies are quite different in character: the amplitude of the band I (lower frequency band) increases with decreasing temperature while the amplitude of the band II (higher frequency band) decreases with decreasing temperature.

Figure 4 presents the temperature dependence of the values of the dielectric relaxation times in form of Arrhenius plots, i.e. $\log \tau_i$ versus the reciprocal of absolute temperature. The values of the activation energy, E_A, calculated from the slopes of these dependencies, are presented in the figure.

The quite different dependence of τ_1 and τ_2 on the molecular length and the important difference in the values of the activation energy can be the base for an interpretation of the two bands of dielectric absorption in the isotropic phase of n-TPEB's. It seems to be reasonable that these bands correspond to the different molecular rotations: around the short and long molecular axis [9]. The band II corresponds to the rotation around the long axis: both τ_2 and E_A within our experimental errors do not depend on the length of the TPEB molecules. This can be expected for this kind of the rotation.

This absorption band can also be considered as corresponding to the intramolecular rotation of the ϕ-NCS group. However, our calculations made by a quantum mechanical semi-empirical method [10] show that this internal rotation involves only a small change in the dipole moment and can not be detected in the dielectric absorption.
For the rotation around the short molecular axis (band I), both the values of the relaxation time τ_1 and the activation energy E_A depend on the molecular length. The value of the activation energy is here about twice that obtained for rotation around long molecular axis.

Acknowledgements

This work was supported by the KBN Grant No. 2P 302 275 03.