Three Types of Chaotic Attractors in 3 D Maps

Michael Klein
Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen, FRG
and Staedelschule, Institute for New Media, Frankfurt a. M., FRG

Achim Kittel
Physical Institute, University of Tübingen, Tübingen, FRG

Gerold Baier
Institute for Chemical Plant Physiology, University of Tübingen, Tübingen, FRG

Z. Naturforsch. 48 a, 666-668 (1993); received March 23, 1993

Coupling a one-dimensional chaotic forcing to a stable fixed point in the plane may generate different fractal attractors embedded in three dimensions. The system with real eigenvalues of the fixed point gives rise to simple chaotic attractors with three different types of fractal structures. We show that the competition of local exponents provides a generic criterion for the classification of the fractal structures in dynamical systems.

1. Introduction

It was shown [1, 2] that simple chaotic attractors of three-variable time-discrete maps with a spectrum of ordered Lyapunov characteristic exponents (LCEs) of (+, −, −), (where \(A_1 \geq A_2 \geq A_3 \) and \(\sum A_i < 0 \), \(i = 1, 2, 3 \)), may possess three different types of fractal structures. These are distinguishable by means of their two-by-two sums of LCEs.

The fractal structure of chaotic attractors can be predicted from the relation of the global means of divergence (positive exponent) and the means of convergence (negative exponents) \([3, 4]\) classified by their respective sums. The lines of transition between these types of chaotic attractors are given with \(A_1 + A_2 = 0 \) and \(A_1 + A_3 = 0 \), respectively.

2. The Map

Here we investigate a simple three-variable map which realizes the coupling of a chaotic variable to a two-dimensional subsystem with an attracting fixed point. For the sake of direct computability of the Lyapunov exponents \(A_i \) from the eigenvalues \(\lambda_i \) without averaging of local exponents we take the piecewise linear map

\[
\begin{align*}
 x_{i+1} & = (C x_i) \mod 1 , \\
 y_{i+1} & = C x_i + A y_i - B z_i , \\
 z_{i+1} & = y_i
\end{align*}
\]

with variables \(x, y, z \in \mathbb{R} \) and parameters \(A, B, C, e \in \mathbb{R} \), \(i \in \mathbb{N} \). The chaotic forcing in \(x \) (piecewise-linear Bernoulli modulo map) has an eigenvalue (local divergence) \(\lambda_1 = C \) and LCE \(A_1 = \ln C \), respectively, for \(C > 1 \) in the intervall \([0, 1]\).

For \(e = 0 \) the linear two-variable subsystem \((y, z)\) has a fixed point at the origin with eigenvalues

\[
\lambda_{2,3} = \frac{1}{2} (A \pm \sqrt{A^2 - 4B}).
\]

Fig. 1. Possible types of ordinary chaotic attractors in three-variable maps with an LCE-spectrum (+, −, −) with \((A_1 \geq A_2 \geq A_3)\), \(A_1 \) assumed to be in 2. a) Ordinary chaos \(((\lambda_1 + \lambda_2) < 0 \text{ and } (\lambda_2 + \lambda_3) < 0)\), b) Kaplan-Yorke chaos \(((\lambda_1 + \lambda_2) > 0 \text{ but } (\lambda_1 + \lambda_3) < 0)\), c) "bi-fractal" chaotic attractor \(((\lambda_1 + \lambda_2) > 0 \text{ and } (\lambda_1 + \lambda_3) > 0)\).
We will restrict our study to the case of purely real eigenvalues (λ_i) (the analysis of the complex eigenvalues may be found in [5]). The real eigenvalues restrict the window of stability ($|\lambda_2^r|, |\lambda_3^r| < 1$) to a triangular area in parameter space with $|A| < (B+1)$. The parabola $B = A^2/4$ marks the transition between complex eigenvalues (λ_2^c, λ_3^c) and real eigenvalues (λ_2^r, λ_3^r). The fixed point is a focus above this parabola and a node ($\text{Im}(\lambda_2^r) = \text{Im}(\lambda_3^r) = 0$) below.

3. Competition of Local Divergence and Local Convergence

With ($\varepsilon > 0$) the chaos-generating variable x is coupled to the stable fixed point in the (y, z) plane. We find three types of simple chaotic attractors with LCEs $A_i = \ln |\lambda_i|$ and LCE spectrum (+, −, −).

The dynamics of ordinary chaotic attractors is characterized with $\lambda_1 \cdot \lambda_2^c < 1$ and $\lambda_1 \cdot \lambda_3^c < 1$, which means that both rates of convergence (A_2, A_3) exceed the rate of divergence (A_1). The structure of the ordinary chaotic attractors is a striated fractal, a Cantor-set of an infinitely often folded line (Hénon-type attractor [6]) giving rise to a fractal dimension $1 < D_f < 2$. The numerically calculated 2-dimensional cross-section (Eq. (1) with $A = 0.5, B = 0.0625, (y, z)$-plane with $|x-0.25| < 0.001$, see Fig. 2a, b) simply gives a dust-like Cantor-set of points with dimension $D_{f, \text{section}} = 0.5$.

The Kaplan-Yorke-chaotic attractors [7] follow from $A_1 \cdot A_2^r > 1$ but $A_1 \cdot A_3 < 1$, which means that the rate of divergence (A_1) exceeds the rate of convergence with (A_2) but is smaller than the rate of convergence with (A_3). The fractal structure of the attractors may be visualized as a Cantor-set of smooth sheets which are folded along one direction of state-space ("folded curtain"). According to the Kaplan-Yorke conjecture the fractal dimension rises above the nearest integer value, i.e. $2 < D_f < 3$ in a 3-variable map. The cross-section (Eq. (1) with $A = 1.0, B = 0.21, (y, z)$-plane with $|x-0.25| < 0.001$, see Fig. 3a, b) gives a striated Cantor-set of lines with dimension $D_{f, \text{section}} = 1.27$.

In the map (1) a second transition of simple chaotic states is possible with $A_1 \cdot A_2^r > 1$ and $A_1 \cdot A_3^r > 1$. The bi-fractal chaotic attractors [8] are fractalized along two directions of state-space, which means that the rate of divergence (A_1) exceeds both rates of convergence (A_2, A_3). The fractal structure becomes nowhere differentiable with fractal dimension $2 < D_f < 3$. The cross-section (Eq. (1) with $A = 1.2, B = 0.36, (y, z)$-plane...
Fig. 4. (y, z)-cross-section of a bi-fractal chaotic attractor of (1) with $A = 1.2, B = 0.36, C = 2 \cdot 10^{-10}, \varepsilon = 0.1$, (y, z)-plane with $|x - 0.25| \leq 0.001$. a) $0.0 \leq y \leq 0.56$ and $0.0 \leq z \leq 0.61$, b) close up of a) with $0.22 \leq y \leq 0.43$ and $0.3 \leq z \leq 0.361$.

4. Discussion

The idea of dynamical properties of chaotic attractors (rates of local divergence and local convergence) determining statical fractal properties (fractal dimension, smoothness or nowhere differentiability) seems to be universal. The model system of (1) may be seen as prototypical, for we can show [9] that it exhibits dynamical behavior equivalent to a map version of the solenoid [10].

Acknowledgement

Paper presented at the 3rd Annual Meeting of ENGADYN, “Workshop on Nonlinearities, Dynamics, and Fractals, Grenoble, 1992”. We acknowledge controversial but fruitful discussions with the engaged dynamicists of ENGADYN.