The Diode Laser Spectrum of Bromine Monofluoride (BrF) in the Ground Electronic State

Helmut Birk
Abteilung Physikalische Chemie, Universität Ulm, Ulm, Federal Republic of Germany

Z. Naturforsch. 48a, 581–583 (1993); received February 28, 1993

The infrared absorption spectra of the two isotopic forms of bromine monofluoride in natural abundance (\(^{79}\)BrF: 50.54%, \(^{81}\)BrF: 49.46%) in their ground electronic state (\(\Sigma^2\)) have been measured, using a diode laser spectrometer. These data were fitted along with the published infrared and microwave spectra to produce an improved set of Dunham \(Y\)-parameters and a set of mass-independent parameters. Also, the coefficients of the Dunham potential function of bromine monofluoride were determined by a direct fit to the experimental data.

Key words: Infrared spectroscopy; Laser spectroscopy; Diatomic molecule; BrF; Dunham parameters.

Introduction

During an attempt to measure the \(v_2\)-band of CF\(_2\) in the gas phase (CF\(_2\) was generated by an electrical or microwave discharge in CF\(_2\)Br\(_2\) in a White cell) a number of intensive single lines of an unstable substance were observed. These could not come from CF\(_2\), since in the case of CF\(_2\), an asymmetric top, groups of lines were to be expected. These lines were later identified as transitions of bromine monofluoride.

In addition to a number of different measurements of the electronic spectra of bromine monofluoride, there are two previous investigations of the high resolution infrared spectrum by Nakagawa et al. with the diode laser [1] and by Bürger et al. [2] at medium resolution using an FTIR spectrometer with a resolution of 0.04 cm\(^{-1}\). The microwave and milliwave spectra of BrF were observed by Nair et al. [3] and by Willis et al. [4, 5]. Some 31 lines of the two isotopic species of BrF were observed in the present work, only five of these having been observed previously by Nakagawa et al. [1]. It was decided to refit all available high resolution data for BrF to determine an optimum set of molecular parameters.

Experimental

Measurements were carried out using a White cell with a 16 m path length. The BrF sample was produced from CF\(_2\)Br\(_2\) both by an electric discharge directly within the absorption cell and by a microwave discharge outside the White cell. A slow stream of CF\(_2\)Br\(_2\) was passed through the discharge zone at a total pressure of about 1 mbar.

The diode laser spectrometer used was based on the laser head assembly of Spectra Physics with diodes from the same company. Measurements were carried out to a nominal accuracy of 0.001 cm\(^{-1}\), using a calibrated confocal étalon with a FSR of 0.009784 cm\(^{-1}\) in conjunction with accurately measured absorption lines. A single diode which operated in the relevant spectral region gave fairly good coverage (with gaps) of the region from 634 cm\(^{-1}\) to 683 cm\(^{-1}\). Absolute wavenumber calibration was carried out using accurately known absorption lines of CO\(_2\) [6].

The signals detected by an HgCdTe infrared detector were processed by source modulation of the diode laser at 8 kHz followed by phase sensitive detection.

Spectra and Analysis

The measured rotational transitions [3, 5], a total of 34 lines ranging in N from 0 to 12 and vibrational state up to \(v = 3\) for the two isotopomers, were augmented with the infrared data from Nakagawa et al. [1], and from this work (Table 1) and the whole data set was treated in three ways:

1. To these the usual Dunham [7] expression for the energy levels of a diatomic molecule

 \[
 F = \sum_{ij} Y_{ij}(v + 1/2)^{\ell}(N(N+1))^{\ell},
 \]

 was fitted. The fitted Dunham parameters and the values obtained for \(^{79}\)BrF and \(^{81}\)BrF are shown in Table 2. The values for these parameters available at

License: Creative Commons Namensnennung 4.0 Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License.
Table 1. Observed infrared transitions (in cm\(^{-1}\)) of BrF.

Table 2. Dunham coefficients determined for BrF (in cm\(^{-1}\)).

Table 3. Mass independent parameters of BrF (in cm\(^{-1}\) x \(\mu\)^\(1/2\)) and mass scaling factors using the equation given by Watson [8]

\[
E = \sum_{ij} \mu^{-(i/2+j)} U_{ij} \left(1 + (m_e/m_A) \Delta_{ij}^A + (m_e/m_B) \Delta_{ij}^B \right) (v+1/2)^j (N(N+1))^{ij},
\]

where \(\mu\) is the reduced mass, \(m_e\) is the mass of the electron, \(m_A\) and \(m_B\) are the masses, and \(\Delta_{ij}^A\) and \(\Delta_{ij}^B\) the mass scaling factors for atom A and B, respectively.

Other than in the case of diatomic molecules such as SiS [9], SnS [10] and metal monohydrides (cf. e.g. [11, 12]), it was found to be unnecessary to include mass scaling coefficients in the energy formula above. In order to reproduce the experimental data adequately it was sufficient to consider only the simple mass dependence for a diatomic molecule

\[
Y_{ij}^* = \left(\frac{\mu}{\mu^*}\right)^{(i/2+j)} Y_{ij},
\]

the beginning of this work are included in Table 2 for comparison.

2. The data of the two isotopic species of BrF were used simultaneously in order to fit a set of mass-independent parameters \((U_{ij})\) and mass scaling coefficients \((\Delta_{ij})\) using the equation given by Watson [8]
Discussion

The main advantage of the Dunham expression for the term values of the rotating and vibrating diatomic molecule is ease of computation. However, as Dunham himself recognised [7], this expression results in the introduction of redundance (i.e. more parameters are used than really necessary).

The procedure adopted here was to use the minimum number of Y-parameters which were required to reproduce the experimental data-set given (Table 1, [1, 3, 5]). In this case, the eight Y's listed with a standard deviation in Table 2 were found to be necessary. The results are compared in Table 2 with those previously obtained, and as can be seen from this table an improvement over all previous data has been achieved.

The fit of the experimental data (Table 1, [1, 3, 5]) to the Dunham potential function is carried out over the relationships between the Y-parameters and the coefficients of the function given by Dunham [7].

The superiority of this procedure is demonstrated by the fact that the residuals of a fit which included only five variables \(\omega_e, B_e, a_1, a_2, a_3\), etc., and the values obtained are shown in Table 4, in which the values for IF [15] are also listed for comparison.

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft.

| | \(^{79}\text{BrF}\) | \(^{81}\text{BrF}\) | IF * |
|--------|----------------|----------------|-----|------|
| \(\omega_e\) [cm\(^{-1}\)] | 669.92554 (96) | 668.31840 (94) | 610.2771 (17) |
| \(B_e\) [cm\(^{-1}\)] | 0.35582815 (9) | 0.35412375 (10) | 0.279711420 (20) |
| \(a_1\) | -3.28779 (11) | -3.28814 (12) | -3.435163 (41) |
| \(a_2\) | 6.398 (61) | 6.40217 (60) | 7.2688 (17) |
| \(a_3\) | -10.89 (10) | -10.841 (12) | -13.03 (12) |
| \(\sigma\) | 0.0010 | 0.0014 | 0.0003 |
| IR-Lines | 44 | 53 | 17 |
| MW-Lines | 18 | 16 | 10 |

Numbers in parentheses represent obs. – calc. in units of the last digit.

* Data from [15].