Bending Energy Minimisation Criterion for Molecular Geometry in XY₃ Pyramidal Systems

K. Indira and M. K. Rudra Warier
Department of Physics, Maharajas College, Kochi 682011, India

T. R. Ananthakrishnan
Department of Physics, St. Paul's College, Kalamassery 683504, India

Z. Naturforsch. 47a, 1119–1120 (1992); received July 11, 1992

A study of the variation of the vibrational potential energy contribution with interbond angles in XY₃ pyramidal molecules confirms the observation previously made for XY₂ bend symmetric systems that the actual equilibrium configuration lies in the premises of minimum \(V_{\text{bend}} \) and zero \(V_{\text{stretch-bend}} \).

An analysis of the variation of the vibrational potential energy with geometry in simple molecules can be of fundamental interest and a mathematical formalism for this purpose has been developed recently [1]. The plots of various contributions to the potential energy \(V \) with semi interbond angle \(\theta \) in XY₂ bend symmetric systems seem to suggest that the actual equilibrium configuration lies in the premises of minimum for \(V_{\text{bend}} \) and zero for \(V_{\text{bend-stretch}} \). Extension of the analysis to XY₃ pyramidal systems is discussed below.

XY₃ pyramidal molecules belong to the \(C_{3v} \) point group, have the vibrational representation \(T = 2A_1 + 2E \), and contributions to the potential energy come from stretching, bending, and different mutual interactions between the two. The recipe for plotting the potential energy contributions as a function of the semi interbond angle \(\theta \) is almost the same as given in the earlier work [1] except that here one has to deal with two vibrational species viz., \(A_1 \) and \(E \), both of order two (as against one vibrational species of order two and one vibrational species of order one viz., \(A_1 \) and \(B_1 \) in XY₂ bend symmetric systems).

Fortunately, there are a few XY₃ pyramidal molecules in the literature for which the interbond angles are uniquely fixed and the normal and isotopic frequencies have been exactly determined [2]. Moreover, these happen to be hydrides where the isotopic fre-

Reprint requests to Prof. Dr. M. K. R. Warier, Department of Physics, Maharajas College, Kochi 682011, India.

Fig. 1. Variation of the vibrational potential energy with the semi interbond angle in SbH₃ molecule.

0932-0784 / 92 / 1100-1119 $ 01.30/0. – Please order a reprint rather than making your own copy.
quency shifts are comparatively large. This has enabled us to draw the $V - \theta$ plots for such molecules which verify the criterion of V_{bend} minimum for the equilibrium configuration.

The results are given in Table 1 along with a typical plot in Figure 1. The values of interbond angles corresponding to the V_{bend} minimum show even better agreement than in the case of XY_2 bend symmetric systems [1].

Table 1. Semi interbond angle determined from energy considerations.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Semi interbond angle</th>
<th>Experimental value [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_e = \text{min}$</td>
<td>$V_{\theta} = 0$</td>
</tr>
<tr>
<td>SbH$_3$, SbD$_3$</td>
<td>45.75° 46°</td>
<td>45.75°</td>
</tr>
<tr>
<td>AsH$_3$, AsD$_3$</td>
<td>45.25° 44°</td>
<td>46°</td>
</tr>
<tr>
<td>PH$_3$, PD$_3$</td>
<td>45.75° 44.75°</td>
<td>46.75°</td>
</tr>
<tr>
<td>NH$_3$, ND$_3$</td>
<td>53.6° 53.6°</td>
<td>53.5°</td>
</tr>
</tbody>
</table>