Zeeman NQR Studies on Polycrystals of Copper Compounds, Arsenic Compounds, and Chlorine Compounds*

Osamu Ege
Department of Physics, Faculty of Education, Miyazaki University, Gakuen-kibanadai, Miyazaki 889-21, Japan

Sanyo Hamai
Department of Physics, Miyazaki Medical College, Kiyotake, Miyazaki 889-16, Japan

Hisao Negita
Computer Center, Hiroshima University of Economics, Gion, Asaminami, Hiroshima 731-01, Japan

Z. Naturforsch. 47a, 401–408 (1992); received July 26, 1991

Powder Zeeman NQR (PZNQR) spectra of 63Cu, 75As, and 35Cl in various compounds have been observed at 77 K. On the basis of the types of simulated integral curves of PZNQR absorption, the estimated asymmetry parameters of the electric field gradients have been divided into three classes; (1) measurable, (2) small (smaller than about 0.05), and (3) very small (probably zero). The asymmetry parameters have been found to be very small (63Cu, NQR frequency = 26.704 MHz in Cu$_2$O; 0.40 MHz in 32Cu, 32.617 MHz in KCu(CN)$_6$); very small (75As, 78.950, 35Cl, 25.0567 and 25.4036 MHz) and small (35Cl 24.9581 MHz in As$_2$O$_8$); very small (75As, 98.501 and 99.046 MHz in As(C$_6$H$_5$)$_3$); small (38.389 MHz, 0.15 (38.464 MHz), and 0.14 (38.503 MHz) for 35Cl in hexachlorobenzene; small (35.847 MHz) and very small (39.154, 39.603, and 39.615 MHz) for 35Cl in 1-chloro-2-(trichloromethyl)-benzene; small (32.619 MHz) and very small (32.878 MHz) for 35Cl in 1,4-dichlorobutane; very small (37.828 and 38.051 MHz) for 35Cl in 1,1,1-trichloroethane.

Introduction

Powder Zeeman NQR (PZNQR), in which resonance absorption curves were observed under weak magnetic field, was firstly reported by Toyama and Morino [1, 2]. Brooker and Creel, and other researchers investigated PZNQR experimentally and/or using simulation methods [3–11].

Because the asymmetry parameter (η) of the electric field gradient at a nucleus with spin $I = 3/2$ cannot be determined from the NQR frequency itself for a powder sample, the Zeeman effect on NQR for the single crystal has been usually examined. PZNQR is another useful method for the determination of η. The η values estimated from the PZNQR method sometimes give slightly larger values than the values determined by means of the NQR Zeeman method using single crystals because of the following three reasons: (1) the frequency of an NQR oscillator may gradually drift in the repeated scanning time; (2) for a liquid compound at room temperature, there might be some single-crystal grains in a solidified sample at 77 K; (3) the intensity of the static magnetic field for the Zeeman effect may slightly decrease during the scanning time. In spite of these disadvantages, the PZNQR method has been adopted especially when single crystals are not available.

In a previous paper, we (O. E. and H. N.) have pointed out that the η values of Br in bromine compounds can be grouped into three classes on the basis of the patterns of integral curves of PZNQR [10]. First class (type 1): η is greater than about 0.05. For such η values, the PZNQR curve has two sharp dips at the lower- and higher-frequency sides of the central frequency of the resonance. Moreover, two small peaks exist at the mouth of the individual dip. Second class (type 2): η is small. In this case, a PZNQR curve has two small (sometimes broad) peaks which are located at the lower- and higher-frequency sides of the central position of the resonance. Third class (type 3): η is very small, probably zero. For this case, a PZNQR curve exhibits a shoulder-head-shoulder pattern, i.e., a bell

Reprint requests to Prof. Dr. O. Ege, Department of Physics, Faculty of Education, Miyazaki University, Gakuen-kibanadai, Miyazaki 889-21, Japan.

0932-0784/92/0100-0401 $01.30/0. Please order a reprint rather than making your own copy.
shape on which a small bell overlies at the central frequency. In this work, we estimated η values by calculating numerically from observed data or by comparing shapes of observed PZNQR curves with those of simulated ones.

Experimental

Absorption curves of PZNQR were obtained by using a superregenerative oscillator of the modified Kushida type. To investigate the Zeeman effect of NQR curves, the static magnetic field was produced by a Helmholtz coil which was set coaxially with the NQR oscillation coil (sample coil). NQR signals were detected in integral form through a bridge circuit and were fed into a signal averager to improve the signal-to-noise ratio [9, 12]. Because the frequency of the NQR oscillator was modulated at a low sweep-speed, the frequency drift of the NQR oscillator placed a limit on the accumulation time of the signal averager. All the NQR measurements were made at 77 K. In order to compare with the observed PZNQR curves, computer simulated diagrams were obtained using a method similar to that of Brooker and Creel [5].

All chemicals were purchased from Wako Pure Chemical Industries, Ltd. or Nakalai Tesque Ltd., and used without further purification.

Results and Discussions

Krüger and Meyer-Berkhout have studied the NQR of 63Cu in Cu$_2$O at 87 K, and have given 26.697 MHz as the resonance frequency [13]. We observed the integral curves (line shapes) of PZNQR of 63Cu in Cu$_2$O as a function of static magnetic field strength (Figure 1). For comparison, a simulated PZNQR curve for $\eta = 0$ (type 3) is shown in Figure 2.
The observed curves show the characteristic pattern (shoulder-head-shoulder pattern) of type 3, indicating that the \(\eta \) value is very small (probably zero).

McKown and Graybeal investigated the NQR of \(^{63}\text{Cu} \) in \(\text{KCu(CN)}_2 \) by means of the Zeeman effect of a single crystal and obtained an \(\eta \) value of \(0.78 \pm 0.07 \) [14]. Figure 3 shows PZNQR curves of \(^{63}\text{Cu} \) in \(\text{KCu(CN)}_2 \). The PZNQR curve at 13.2 G resembles a simulated curve (type 1) for \(\eta = 0.4 \) shown in Figure 4. Consequently, we ascribe the PZNQR curve of \(^{63}\text{Cu} \) in \(\text{KCu(CN)}_2 \) to the type 1. From the observed curves as shown in Fig. 5, the \(\eta \) value can be estimated according to the following approximate equation valid for small \(\eta \) [9]:

\[
\eta = \frac{(v_C - v_A) + (v_F - v_D)}{2(v_E - v_B)} = \frac{AC + DF}{2BE},
\]

(1)

where \(v_A, v_B, v_C, v_D, v_E, \) and \(v_F \) are frequencies at points \(A, B, C, D, E, \) and \(F, \) and \(AC, DF, \) and \(BE \) are the horizontal distance between the points \(A \) and \(C, \) and so forth. The resulting \(\eta \) is estimated to be 0.38. However, with increasing \(\eta, \) (1) becomes gradually inadequate. When \(\eta \) is large, the following equation, which is based on the peak points of the curve, should be adopted:

\[
\eta = \frac{AC + DF}{AD + CF},
\]

(2)
Table 1. Resonance frequencies, η values, and coupling constants ($e^2 q Q h^{-1}$) of copper compounds and arsenic compounds at 77 K.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Nucleus</th>
<th>Frequency (MHz)</th>
<th>η</th>
<th>$e^2 q Q h^{-1}$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$_2$O</td>
<td>^{63}Cu</td>
<td>26.704</td>
<td>very small</td>
<td>53.408</td>
</tr>
<tr>
<td>KCu(CN)$_2$</td>
<td>^{63}Cu</td>
<td>32.617</td>
<td>0.40</td>
<td>63.561</td>
</tr>
<tr>
<td>As$_2$O$_3$</td>
<td>^{75}As</td>
<td>116.820 [15]</td>
<td>very small</td>
<td>233.640</td>
</tr>
<tr>
<td>AsCl$_3$</td>
<td>^{35}Cl</td>
<td>24.958 [16]</td>
<td>small</td>
<td>49.916</td>
</tr>
<tr>
<td></td>
<td>^{35}Cl</td>
<td>25.0567 [17]</td>
<td>very small</td>
<td>50.113</td>
</tr>
<tr>
<td></td>
<td>^{35}Cl</td>
<td>25.4036 [17]</td>
<td>very small</td>
<td>50.807</td>
</tr>
<tr>
<td>As(C$_6$H$_5$)$_3$</td>
<td>^{75}As</td>
<td>98.501</td>
<td>very small</td>
<td>197.002</td>
</tr>
<tr>
<td></td>
<td>^{75}As</td>
<td>99.046</td>
<td>very small</td>
<td>198.092</td>
</tr>
</tbody>
</table>

The division of two original lines of PZNQR indicates that in the polycrystal there are two different environments around As in As(C$_6$H$_5$)$_3$. Both the original two lines of PZNQR are split into two peaks, separated by about 7 kHz. As the magnetic field is strengthened, broadening of the two individual lines occurs, accompanied by the coalescence of the two peaks into a single line. Taking into account the shapes of the PZNQR curves, it is most likely that the η values for the two lines are very small.

Table 1 summarizes the resonance frequencies, the magnitudes of η, and the coupling constants for the copper and arsenic compounds examined. The coupling constants in Table 1 were calculated assuming $\eta = 0$ in small and very small cases.

NQR lines due to ^{35}Cl in hexachlorobenzene were observed at 38.389 (v_1), 38.464 (v_2), and 38.503 (v_3) MHz. Since the three NQR lines have the same absorption intensity, the individual lines are identified to correspond to two Cl atoms. Consequently, in hexachlorobenzene there are three kinds of Cl atoms which are distinguishable on the basis of the NQR frequency. A monoclinic crystal of hexachlorobenzene has a bimolecular unit at room temperature [19]. Our finding that six Cl atoms in hexachlorobenzene are classified into three groups, each containing two Cl atoms, is consistent with the crystal structure of hexachlorobenzene. Figures 11, 12, and 13 show PZNQR curves for each absorption line due to ^{35}Cl in hexachlorobenzene as a function of magnetic field intensity. According to (1), $\eta(v_2)$ and $\eta(v_3)$ are calculated to be 0.15 and 0.14, respectively. These $\eta(v_2)$ and $\eta(v_3)$ values are in good agreement with η values of 0.151 \pm 0.016 (at -78°C) determined by Richardson [20]. The curves in Fig. 11 are closely similar in shape to the simulated PZNQR curve (type 2) for $\eta = 0.02$ shown in Fig. 9.
which exhibits two small peaks (H and I), indicating that \(\eta(v_1) \) is small (about 0.02). Because \(\eta(v_1) \) is significantly smaller than \(\eta(v_2) \) and \(\eta(v_3) \), the environment around the Cl atom responsible for \(v_1 \) is apparently different from those for \(v_2 \) and \(v_3 \).

1-Chloro-2-(trichloromethyl)-benzene exhibited four NQR lines at 35.796 (\(v_1 \)), 39.154 (\(v_2 \)), 39.603 (\(v_3 \)), and 39.615 (\(v_4 \)) MHz. PZNQR curves at \(v_1 \) and those at higher frequencies are shown in Figs. 14 and 15, respectively. Since the PZNQR curve at \(v_1 \) in Fig. 14 resembles the pattern of type 2, \(\eta(v_1) \) is estimated to be small. From the spectral similarity between the simulated curve in Fig. 2 and the observed PZNQR curve at \(v_2 \) in Fig. 15, \(\eta(v_2) \) is estimated to be very small. The curves at \(v_3 \) and \(v_4 \) in Fig. 15 become broad with increasing intensity of the Zeeman magnetic field. In the broadening process, the positions of the central peaks remain unaltered though the two shoulders, respectively assigned to the curve at \(v_3 \) and that at \(v_4 \), overlap. These curves seem to indicate type 3. Thus, we estimate the \(\eta(v_3) \) and \(\eta(v_4) \) to be very small. Both the fact that \(v_1 \) is the lowest of the frequencies and the
finding that $\eta(v_1)$ is somewhat larger than $\eta(v_2)$, $\eta(v_3)$, and $\eta(v_4)$ imply that the double bond character at the Cl atom responsible for $\eta(v_1)$ is larger than those for $\eta(v_2)$, $\eta(v_3)$, and $\eta(v_4)$. Consequently, in 1-chloro-2-(trichloromethyl)-benzene, a Cl atom responsible for $\eta(v_1)$ seems to attach directly to the benzene ring, while the Cl atoms responsible for $\eta(v_2)$, $\eta(v_3)$, and $\eta(v_4)$ are bound to the C atom of the methyl group. Kiichi et al. have studied NQR of 1-chloro-4-(trichloromethyl)-benzene [21] and found η values and resonance frequencies at 77 K: 0.072 and 34.8293 MHz, 0.040 and 38.4404 MHz, 0.023 and 39.2801 MHz, and 0.045 and 39.2801 MHz, respectively. A trend of decreasing η value with increasing resonance frequency is seen for 1-chloro-4-(trichloromethyl)-benzene, as in the case for 1-chloro-2-(trichloromethyl)-benzene.
Two absorption lines for 1,4-dichlorobutane were found at 32.619 (v_1) and 32.878 (v_2) MHz, indicating that two Cl atoms connected to the terminal C atoms are in inequivalent environments in the 1,4-dichlorobutane crystal. Figure 16 shows PZNQR curves of 1,4-dichlorobutane as functions of magnetic field intensity. Since the curves at v_2 are assigned to type 3, $\eta(v_1)$ and $\eta(v_2)$ are estimated to be very small on the basis of the simulated pattern of type 3 (shoulder-head-shoulder).

Table 2 summarizes the resonance frequencies, the η values, and the coupling constants for the chlorine compounds examined in this work. The coupling constants in Table 2 were calculated, assuming $\eta = 0$ when it was small or very small.

![Fig. 17. PZNQR absorption curves at v_1 and v_2 for 1,1,1-trichloroethane.](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Frequency (MHz)</th>
<th>η</th>
<th>$e^2 q Q h^{-1}$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexachlorobenzene</td>
<td>38.389</td>
<td>small</td>
<td>76.778</td>
</tr>
<tr>
<td></td>
<td>38.464</td>
<td>0.15</td>
<td>76.641</td>
</tr>
<tr>
<td></td>
<td>38.503</td>
<td>0.14</td>
<td>76.756</td>
</tr>
<tr>
<td>1-Chloro-2-(trichloromethyl)-benzene</td>
<td>39.154</td>
<td>very small</td>
<td>78.308</td>
</tr>
<tr>
<td></td>
<td>39.603</td>
<td>very small</td>
<td>79.206</td>
</tr>
<tr>
<td></td>
<td>39.615</td>
<td>very small</td>
<td>79.230</td>
</tr>
<tr>
<td>1,4-Dichlorobutane</td>
<td>32.619</td>
<td>small</td>
<td>65.238</td>
</tr>
<tr>
<td></td>
<td>32.878</td>
<td>very small</td>
<td>65.756</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>37.828</td>
<td>very small</td>
<td>75.656</td>
</tr>
<tr>
<td></td>
<td>38.051</td>
<td>very small</td>
<td>76.102</td>
</tr>
</tbody>
</table>