Excimer Parameters of Anisole

Bogumila Polacka and Zenon Polacki*
Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
Z. Naturforsch. 46a, 577–578 (1991); received December 14, 1990

Fluorescence spectra of anisole at various concentrations and temperatures were measured. Using a standard, the molecular quantum efficiency was obtained. Ours and literature data were analysed to determine the rate parameters and other properties of the anisole excimer-monomer system.

1. Introduction

Knowledge of the excimer (E) parameters of anisole (A) is interesting because A is an effective solvent in liquid scintillators. A-excimers as well as A-monomers can be the excitation energy donors at high concentrations of A in scintillating solutions.

In this paper we determined the UV excited E parameters of A. We investigated the concentration change of the fluorescence spectra (FS) of A in 1,4-dioxane (D) and the temperature change of the FS of neat A. Moreover we found the molecular quantum efficiency (qM).

2. Experimental

A was synthesized according to [1] using phenol as a substrate. The purity of the final product was checked with liquid chromatography.

The solutions of A in 1,4-dioxane (for spectroscopy) were deoxygenated.

The FS, excited at 265 nm, were measured stationary [2] under equal conditions, corrected for the spectral response and normalized to the amount of light absorbed. The effect of fluorescence reabsorption under the given experimental conditions could be neglected [3].

The temperature measurements of the FS were made as in [4].

We determined the qM by comparing the areas under the FS of a standard (quinine sulphate) and 0.09 mole/l A in D. To evaluate qM the necessary corrections were made [5, 6].

3. Results and Discussion

Figure 1 shows both the fluorescence spectra of A obtained for four concentrations and the pure molecular (M) and excimer (E) fluorescence bands. M is the spectrum of 0.09 mole/l A in D, and the spectrum E

![Fig. 1. Fluorescence spectra for four concentrations of anisole in 1,4-dioxane. 1: 2.3, 2: 4.6, 3: 6.9, 4: 9.2 mole/l. E: excimer band, M: monomer band.](image_url)
Table 1. Experimental excimer and molecular properties of \(A \) at 293 K. Concentrations are given in molalities \(M \). Last column: Data from [9].

<table>
<thead>
<tr>
<th>Property</th>
<th>(K) ([M^{-1}])</th>
<th>(c_h) ([M])</th>
<th>(q_M)</th>
<th>(K_e) ([M^{-1}])</th>
<th>(c_e)</th>
<th>(q_E)</th>
<th>(k_{FE}/k_{FM})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.06 ± 0.01</td>
<td>3.6 ± 0.4</td>
<td>0.36 ± 0.04</td>
<td>0.16 ± 0.02</td>
<td>0.59 ± 0.03</td>
<td>0.07 ± 0.01</td>
<td>2.0 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td></td>
<td>0.12</td>
<td>0.29</td>
<td>0.04 ± 0.01</td>
<td>0.16</td>
<td>0.39 ± 0.04</td>
</tr>
</tbody>
</table>

Table 2. Excimer parameters of \(A \) calculated from experimental and literature [6] data. Last column: Data from [9].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(k_{FE}/k_{IM})</th>
<th>(k_{FE}) ([s^{-1}])</th>
<th>(k_{FM}) ([s^{-1}])</th>
<th>(k_{ME}) ([s^{-1}])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.9 ± 0.3</td>
<td>2.3 ± 0.3</td>
<td>3.1 ± 0.3</td>
<td>2.0 ± 0.2</td>
</tr>
</tbody>
</table>

is obtained by subtraction of the spectrum \(M \) from the total spectrum of neat \(A \) (see [7]). Having the areas \(\phi \) under the spectra, we obtained the relative \(E/M \) fluorescence yield \(K = (\phi_E/\phi_M) c^{-1} \), where \(c \) is the concentration of \(A \) in \(D \) (Table 1).

The dependence of the intensity of the A molecular fluorescence peak \(I_M \) (at \(\tilde{\nu}_M = 33.5 \cdot 10^3 \text{ cm}^{-1} \)) on \(c \) obeys the Stern-Volmer relation. Thus we can determine the half value concentration \(c_h \) of \(A \) in \(D \) (Table 1) [8].

When the temperature is changed (within 263 to 353 K), \(I_M \) depends linearly on \(I_E \) (the intensity of excimer fluorescence peak at \(\tilde{\nu}_E = 28.5 \cdot 10^3 \text{ cm}^{-1} \)). Then the rate parameters of excimerization \(k_{EM} \) and dissociation \(k_{ME} \) fulfill the condition \(k_{EM} \geq k_E, k_M \), where \(k_E, k_M \) are the deactivation rate parameters of the \(E \) and \(M \) states, respectively. Thus the equilibrium constant of excimerization \(K_e = k_{EM}/k_{ME} \) is obtained by subtraction of the spectrum \(M \) from the total spectrum of neat \(A \) (see [7]). Having the areas \(f \) under the spectra, we obtained the relative \(E/M \) fluorescence yield \(K = (\phi_E/\phi_M) c^{-1} \), where \(c \) is the concentration of \(A \) in \(D \) (Table 1).

The quantum efficiency of \(E \) fluorescence \(q_E \) was determined from the relation \(\phi = \phi_M + \phi_E = m q_M + c q_E \).

The ratios of the \(E/M \) radiative \((k_{FE}/k_{FM})\) and deactivation \((k_E/k_M)\) rate parameters are given by \(k_{FE}/k_{FM} = K/K_c \) and \(k_E/k_M = c_h K_e \), respectively. The values of \(e, q_E, k_E/k_M \) and \(k_{FE}/k_{FM} \) are presented in Table 1.

The quantum efficiency of \(E \) fluorescence \(q_E \) was determined from the relation \(\phi = \phi_M + \phi_E = m q_M + c q_E \).

The ratios of the \(E/M \) radiative \((k_{FE}/k_{FM})\) and deactivation \((k_E/k_M)\) rate parameters are given by \(k_{FE}/k_{FM} = K/K_c \) and \(k_E/k_M = c_h K_e \), respectively. The values of \(e, q_E, k_E/k_M \) and \(k_{FE}/k_{FM} \) are presented in Table 1.

Using the data of \(\tau_M \) and \(\tau_{FM} \) (\(\tau_M \) is the decay time and \(\tau_{FM} \) the natural lifetime) according to [6] we calculated \(k_{EM} = 1/\tau_M = 1.2 \cdot 10^8 \text{ s}^{-1} \), \(k_{FM} = 1/\tau_{FM} = 3.7 \cdot 10^7 \text{ s}^{-1} \) and \(k_{IM} = k_{IM} - k_{FM} \). Having the \(k_{FM} \), \(k_{EM} \) and \(k_{IM} \) we estimated the values of \(k_{FE}, k_E \), and \(k_{IF} \) (Table 2).

The values of \(k_{EM} \) and \(k_{ME} \) were calculated from the relations \(K_e = k_{EM}/k_{ME} \) and \(c_h = k_M(k_{EM}+k_{ME})/k_{EM} \) (see Table 2).

We can compare some of our results with those of Joneleit obtained for electron excitation [9] (see Tables 1 and 2). Evidently our \(k_{FE}/k_{FM} \) value agrees with that of Joneleit, but our \(k_{EM} \) and \(k_{ME} \) values differ remarkably from those obtained by Joneleit. They are, however, similar to those for toluene [10].

Our values of \(k_{EM} \) and \(k_{ME} \) will be used to explain the role of excimers as donors in the excitation energy transfer in liquid scintillators.

Acknowledgement

This work was carried out under the Research Project CPBP 01.06–2.02.