Quadrupole Hyperfine Structure in the Rotational Spectra of 1,2- and 1,3-Dichlorobenzene

I. Merke, Ch. Keussen, and H. Dreizler

Abteilung Chemische Physik im Institut für Physikalische Chemie der Universität Kiel

M. Onda

Department of Chemistry, Faculty of Science and Technology, Sophia University, Tokyo 102, Japan

Z. Naturforsch. 45a, 1273–1280 (1990); received August 16, 1990

The high resolution of microwave Fourier transform spectroscopy was used to investigate the \(^3 \)Cl-hfs of 1,2- and 1,3-dichlorobenzene, \(\text{C}_6\text{H}_4\text{Cl}_2 \), very accurately in the rotational spectrum of their ground vibrational state. The careful analysis with a new evaluation program also yielded the off-diagonal element of the coupling tensor. The tensor elements are \(\chi_{aa} = -41.1155(35) \text{ MHz}, \chi_{bb} = 8.3415(96) \text{ MHz}, \chi_{cc} = 32.7738(61) \text{ MHz}, \text{ and } \chi_{ab} = \pm 52.4158(58) \text{ MHz} \) for 1,2-dichlorobenzene and \(\chi_{aa} = -44.174(12) \text{ MHz}, \chi_{bb} = 10.876(12) \text{ MHz}, \chi_{cc} = 33.298(12) \text{ MHz}, \text{ and } \chi_{ab} = \pm 48.181(39) \text{ MHz} \) for 1,3-dichlorobenzene.

Introduction

The microwave spectrum of 1,2-dichlorobenzene (1,2-DCB) was first measured and assigned by Onda et al. [1]. They determined the quadrupole coupling constants \(\chi_{aa}, \chi_{bb}, \text{ and } \chi_{cc} \) by an analysis of the envelope of the hyperfine (hfs) pattern and discussed the molecular structure, which was reinvestigated by Onda et al. [2, 3] analysing the spectra of six monodeuterated 1,2-DCB-3d and -4d. They found the two C–Cl bonds to be bent outward from each other by about 1° with respect to an 120° CCC1 angle. The orientation of the principal coupling tensor axes \(y = x, y, z \) was assumed with the help of a comparison with values of \(\chi_{xx}, \chi_{yy}, \text{ and } \chi_{zz} \) of 1,3-DCB. Onda et al. also investigated the rotational spectrum of 1,3-DCB for the first time [4]. Their purpose was to obtain information about the planarity of the molecule and the Cl–Cl distance. The \(^3 \)Cl-hfs was observed but not analysed. A later investigation [5] of some Q-branch transitions allowed a rough determination of the coupling constants. It followed a partial \(r_0 \) structure based on the spectra of monodeuterated isotopomers [2] and a complete molecular structure based on the data of different techniques [6]. The purpose of our investigation is to improve the accuracy of the coupling constants by analysis of highly resolved spectra and to determine the off-diagonal coupling tensor element \(\chi_{ab} \). So the orientation of the coupling tensor and its principal coupling elements can be determined without assumptions.

Experimental

We purchased 1,2- and 1,3-DCB from Aldrich, Steinheim, and used it without further purification. First measurements were made with waveguide microwave Fourier transform (MWFT) spectrometers in X- (8–12.4 GHz), Ku- (12.4–18 GHz), and K-band (18–26.4 GHz) [7–9]. These measurements were supplemented with our pulsed molecular beam (MB) MWFT spectrometer in two versions [10].

The waveguide spectra were recorded at temperatures of \(-10 \degree \text{C} \) (1,2-DCB) and \(-15 \text{ to } -30 \degree \text{C} \) (1,3-DCB) and pressures from 2 to 5 mTorr (0.3 to 0.7 Pa) and 1 to 2.5 mTorr (0.15 to 0.35 Pa), respectively. The MB spectra were made with a stagnation pressure of about 200 to 400 Torr (2.7 \times 10^4 to 5.4 \times 10^4 Pa) and about 1% substance in argon.

To eliminate overlap effects [11] the frequencies of transitions in the waveguide MWFT spectra were determined by a least squares fit of the time domain signal [12].

The line frequencies of the MB spectra were taken without additional treatment. These MB measurements were especially useful and necessary as the cooling effect eliminates spectra of excited vibrational states and high J transitions. So the patterns were

0932-0784 / 90 / 1100-1273 $ 01.30/0. — Please order a reprint rather than making your own copy.
Table 1. Rotational transitions of 1,2-dichlorobenzene. \(v \): measured frequency [MHz], \(\delta_{\text{hfs}} \): difference between observed and calculated frequency of the hyperfine component [kHz], \(v_0 \): hypothetical unsplit line frequency [MHz]. Measurements excluded from the fit of the quadrupole coupling constants because of limitations in computer memory and time are marked with an asterisk.

<table>
<thead>
<tr>
<th>J' K' I K I</th>
<th>F' (\pm) F</th>
<th>I' (\pm) I</th>
<th>(v) [MHz]</th>
<th>(\delta_{\text{hfs}}) [kHz]</th>
<th>(v_0) [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2 1 + 2 2 0</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
<td>7704.722</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>7702.255</td>
<td>2</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0.0</td>
<td>7701.522</td>
<td>0</td>
</tr>
<tr>
<td>5.0</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>7696.751</td>
<td>-3</td>
</tr>
<tr>
<td>7.0</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>7696.700</td>
<td>-1</td>
</tr>
<tr>
<td>9.0</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>7694.220</td>
<td>-1</td>
</tr>
<tr>
<td>11.0</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>7691.198</td>
<td>-2</td>
</tr>
<tr>
<td>13.0</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>7691.331</td>
<td>7</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>7689.923</td>
<td>-2</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>4.0</td>
<td>3.0</td>
<td>7683.533</td>
<td>-2</td>
</tr>
<tr>
<td>6.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>7681.106</td>
<td>1</td>
</tr>
<tr>
<td>7.0</td>
<td>3.0</td>
<td>4.0</td>
<td>3.0</td>
<td>7680.532</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>7680.005</td>
<td>0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>7679.807</td>
<td>-3</td>
</tr>
<tr>
<td>4 2 3 + 3 2 2</td>
<td>1.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>8754.859</td>
</tr>
<tr>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
<td>8754.822</td>
<td>8</td>
</tr>
<tr>
<td>4.0</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>8753.122</td>
<td>10</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8753.084</td>
<td>-8</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
<td>8752.427</td>
<td>5</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>3.0</td>
<td>8752.388</td>
<td>7</td>
</tr>
<tr>
<td>7.0</td>
<td>3.0</td>
<td>6.0</td>
<td>3.0</td>
<td>8750.884</td>
<td>-2</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>3.0</td>
<td>8750.099</td>
<td>2</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>8750.166</td>
<td>1</td>
</tr>
<tr>
<td>5.0</td>
<td>1.0</td>
<td>4.0</td>
<td>3.0</td>
<td>8749.267</td>
<td>1</td>
</tr>
<tr>
<td>6.0</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td>8748.877</td>
<td>-1</td>
</tr>
<tr>
<td>6.0</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>8746.591</td>
<td>3</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>8745.915</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>8745.875</td>
<td>8</td>
</tr>
<tr>
<td>4.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>8744.671</td>
<td>-2</td>
</tr>
<tr>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0</td>
<td>8743.870</td>
<td>-2</td>
</tr>
<tr>
<td>4 3 1 + 3 3 0</td>
<td>1.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>10001.907</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
<td>9988.834</td>
<td>3</td>
</tr>
<tr>
<td>6.0</td>
<td>3.0</td>
<td>6.0</td>
<td>3.0</td>
<td>9971.120</td>
<td>-3</td>
</tr>
<tr>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
<td>9967.770</td>
<td>-1</td>
</tr>
<tr>
<td>4.0</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>9966.254</td>
<td>1</td>
</tr>
<tr>
<td>4.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>9966.129</td>
<td>3</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>3.0</td>
<td>9962.981</td>
<td>3</td>
</tr>
<tr>
<td>7.0</td>
<td>3.0</td>
<td>6.0</td>
<td>3.0</td>
<td>9962.521</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>3.0</td>
<td>9961.008</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>9960.120</td>
<td>0</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>9966.600</td>
<td>8</td>
</tr>
<tr>
<td>6.0</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td>9966.553</td>
<td>-2</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>9966.508</td>
<td>-9</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>9962.510</td>
<td>0</td>
</tr>
<tr>
<td>5.0</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>9982.420</td>
<td>-1</td>
</tr>
<tr>
<td>6.0</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>9980.017</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>9979.959</td>
<td>-2</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>9978.993</td>
<td>-3</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>9977.067</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td>3.0</td>
<td>9975.458</td>
<td>1</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>4.0</td>
<td>3.0</td>
<td>9973.647</td>
<td>-3</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>J' K' K</th>
<th>$J K \pm K$</th>
<th>F' I' F</th>
<th>I</th>
<th>ν</th>
<th>δ_{hfs}</th>
<th>ν_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 7 8 + 15 7 9</td>
<td>13.0 2.0 13.0 2.0</td>
<td>10902.080</td>
<td>-1</td>
<td>10902.081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0 2.0 17.0 2.0</td>
<td>10902.080</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0 2.0 14.0 2.0</td>
<td>10902.080</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 2.0 16.0 2.0</td>
<td>10902.080</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0 3.0 13.0 3.0</td>
<td>10902.034</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0 3.0 17.0 3.0</td>
<td>10902.121</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 3.0 16.0 3.0</td>
<td>10902.345</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0 3.0 15.0 3.0</td>
<td>10902.311</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0 0.0 15.0 0.0</td>
<td>10902.293</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0 3.0 14.0 3.0</td>
<td>10901.862</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 3.0 18.0 3.0</td>
<td>10901.846</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0 1.0 15.0 1.0</td>
<td>10901.846</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0 3.0 12.0 3.0</td>
<td>10901.821</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 8 8 + 16 8 9</td>
<td>17.0 2.0 17.0 2.0</td>
<td>9099.547</td>
<td>4</td>
<td>9099.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0 2.0 15.0 2.0</td>
<td>9099.547</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 2.0 18.0 2.0</td>
<td>9099.547</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0 2.0 14.0 2.0</td>
<td>9099.547</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0 3.0 14.0 3.0</td>
<td>9099.605</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 3.0 18.0 3.0</td>
<td>9099.485</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0 3.0 13.0 3.0</td>
<td>9099.940</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 1.0 16.0 1.0</td>
<td>9099.895</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 2.0 16.0 2.0</td>
<td>9099.895</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 3.0 19.0 3.0</td>
<td>9099.853</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0 3.0 15.0 3.0</td>
<td>9099.677</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 3.0 16.0 3.0</td>
<td>9099.194</td>
<td>-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 0.0 16.0 0.0</td>
<td>9099.194</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0 3.0 17.0 3.0</td>
<td>9099.151</td>
<td>-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 9 9 + 18 9 10</td>
<td>17.0 1.0 17.0 1.0</td>
<td>10245.522</td>
<td>0</td>
<td>10245.518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 1.0 19.0 1.0</td>
<td>10245.522</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 2.0 19.0 2.0</td>
<td>10245.522</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0 2.0 17.0 2.0</td>
<td>10245.522</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0 2.0 20.0 2.0</td>
<td>10245.522</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 2.0 16.0 2.0</td>
<td>10245.522</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0 3.0 15.0 3.0</td>
<td>10245.924</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 1.0 18.0 1.0</td>
<td>10245.891</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 2.0 18.0 2.0</td>
<td>10245.891</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0 3.0 21.0 3.0</td>
<td>10245.877</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0 3.0 17.0 3.0</td>
<td>10245.177</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 3.0 18.0 3.0</td>
<td>10245.139</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 0.0 18.0 0.0</td>
<td>10245.139</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 3.0 19.0 3.0</td>
<td>10245.099</td>
<td>-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 3.0 16.0 3.0</td>
<td>10245.581</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0 3.0 20.0 3.0</td>
<td>10245.470</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 (continued)

<table>
<thead>
<tr>
<th>J' K' K</th>
<th>$J K \pm K$</th>
<th>F' I' F</th>
<th>I</th>
<th>ν</th>
<th>δ_{hfs}</th>
<th>ν_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 11 10 + 21 11 11</td>
<td>20.0 1.0 20.0 1.0</td>
<td>8903.123</td>
<td>-3</td>
<td>8903.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0 2.0 20.0 2.0</td>
<td>8903.123</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0 1.0 22.0 1.0</td>
<td>8903.123</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0 2.0 23.0 2.0</td>
<td>8903.123</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0 2.0 22.0 2.0</td>
<td>8903.123</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 2.0 19.0 2.0</td>
<td>8903.123</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0 3.0 23.0 3.0</td>
<td>8903.032</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 3.0 19.0 3.0</td>
<td>8903.231</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0 3.0 20.0 3.0</td>
<td>8902.442</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0 3.0 21.0 3.0</td>
<td>8902.398</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0 0.0 21.0 0.0</td>
<td>8902.398</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0 3.0 22.0 3.0</td>
<td>8902.345</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 3.0 18.0 3.0</td>
<td>8903.892</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0 1.0 21.0 1.0</td>
<td>8903.848</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0 2.0 21.0 2.0</td>
<td>8903.848</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.0 3.0 24.0 3.0</td>
<td>8903.793</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 12 11 + 23 12 12</td>
<td>20.0 3.0 20.0 3.0</td>
<td>9966.549</td>
<td>1</td>
<td>9965.778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0 2.0 23.0 2.0</td>
<td>9966.502</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.0 3.0 26.0 3.0</td>
<td>9966.453</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0 3.0 21.0 3.0</td>
<td>9965.869</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.0 2.0 24.0 2.0</td>
<td>9965.778</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0 2.0 22.0 2.0</td>
<td>9965.778</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0 2.0 25.0 2.0</td>
<td>9965.778</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0 2.0 21.0 2.0</td>
<td>9965.778</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0 3.0 25.0 3.0</td>
<td>9965.704</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0 3.0 22.0 3.0</td>
<td>9965.098</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0 0.0 23.0 0.0</td>
<td>9965.057</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.0 3.0 24.0 3.0</td>
<td>9965.012</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Measured rotational transition frequencies of 1,3-dichlorobenzene. Explanation of symbols see Table 1.

| J' K' K' + J K_ K_ F' I' F I ν b_{hfs} ν_o |
|---|---|---|---|---|---|---|
| 4 2 3 1 2 | 4.0 3.0 3.0 0.0 | 11699.838 | -1 | 11700.774 |
| 7.0 3.0 6.0 3.0 | 11700.750 | -1 |
| 3.0 2.0 4.0 0.0 | 11701.654 | 2 |
| 5.0 1.0 4.0 1.0 | 11701.338 | -2 |
| 5.0 2.0 4.0 2.0 | 11701.525 | -4 |
| 6.0 2.0 5.0 2.0 | 11701.572 | 7 |
| 4.0 2.0 3.0 2.0 | 11702.206 | 0 |
| 4 4 1 3 0 | 2.0 2.0 2.0 2.0 | 20590.414 | 3 | 20590.427 |
| 6.0 2.0 5.0 2.0 | 20590.414 | -3 |
| 2.0 2.0 1.0 2.0 | 20590.414 | 8 |
| 5.0 2.0 4.0 2.0 | 20590.414 | -10 |
| 3.0 2.0 2.0 2.0 | 20590.414 | 1 |
| 5.0 2.0 5.0 2.0 | 20590.414 | 22 |
| 6.0 3.0 5.0 3.0 | 20589.624 | -10 |
| 4.0 2.0 3.0 2.0 | 20588.950 | 1 |
| 7.0 3.0 6.0 3.0 | 20588.396 | -7 |
| 4 4 0 3 1 | 5.0 1.0 4.0 1.0 | 20591.688 | 5 | 20591.112 |
| 6.0 2.0 5.0 2.0 | 20591.106 | 6 |
| 2.0 2.0 1.0 2.0 | 20591.106 | 16 |
| 5.0 2.0 4.0 2.0 | 20591.106 | -1 |
| 3.0 2.0 2.0 2.0 | 20591.106 | 10 |
| 6.0 3.0 5.0 3.0 | 20590.313 | -9 |
| 4.0 1.0 3.0 1.0 | 20589.725 | 0 |
| 4.0 2.0 3.0 2.0 | 20589.615 | -9 |
| 7.0 3.0 6.0 3.0 | 20589.085 | 5 |
| 3.0 3.0 3.0 3.0 | 20579.300 | 9 |

Table 2 (continued)

| J' K' K' + J K_ K_ F' I' F I ν b_{hfs} ν_o |
|---|---|---|---|---|---|---|
| 5 4 1 4 2 | 5.0 0.0 5.0 2.0 | 22127.424 | -3 | 22120.586 |
| 6.0 3.0 5.0 3.0 | 22123.795 | 7 |
| 5.0 0.0 4.0 0.0 | 22123.325 | 3 |
| 5.0 3.0 4.0 3.0 | 22123.168 | -10 |
| 4.0 1.0 3.0 1.0 | 22122.694 | -4 |
| 7.0 3.0 6.0 3.0 | 22121.505 | 5 |
| 4.0 3.0 3.0 3.0 | 22120.562 | -11 |
| 3.0 2.0 3.0 2.0 | 22120.562 | 0 |
| 3.0 2.0 2.0 2.0 | 22120.562 | 16 |
| 7.0 2.0 6.0 2.0 | 22120.562 | -3 |
| 4.0 2.0 3.0 2.0 | 22120.562 | -4 |
| 6.0 2.0 5.0 2.0 | 22120.562 | -4 |
| 6.0 2.0 6.0 2.0 | 22120.562 | 11 |
| 8.0 3.0 7.0 3.0 | 22118.318 | 11 |
| 4 4 0 3 1 | 6.0 3.0 6.0 3.0 | 8290.888 | -2 | 8300.529 |
| 5.0 0.0 4.0 0.0 | 8298.395 | 2 |
| 3.0 3.0 2.0 3.0 | 8298.619 | -1 |
| 6.0 3.0 5.0 3.0 | 8298.817 | 1 |
| 4.0 3.0 3.0 3.0 | 8299.050 | 0 |
| 5.0 0.0 4.0 0.0 | 8299.127 | -3 |
| 4.0 1.0 3.0 1.0 | 8299.295 | 0 |
| 3.0 2.0 2.0 2.0 | 8299.832 | -5 |
| 7.0 2.0 6.0 2.0 | 8300.111 | 1 |
| 6.0 1.0 5.0 1.0 | 8300.264 | 1 |
| 7.0 3.0 6.0 3.0 | 8301.096 | 1 |
| 8.0 3.0 7.0 3.0 | 8301.792 | -1 |
| 5.0 3.0 5.0 3.0 | 8304.385 | 2 |
| 3.0 3.0 3.0 3.0 | 8305.294 | 4 |
| 5 4 2 4 3 1 | 7.0 3.0 7.0 3.0 | 22115.768 | 1 | 22115.670 |
| 6.0 3.0 5.0 3.0 | 22118.830 | -3 |
| 5.0 3.0 4.0 3.0 | 22118.233 | -4 |
| 9.0 3.0 9.0 3.0 | 22117.741 | -11 |
| 7.0 3.0 6.0 3.0 | 22117.656 | -2 |
| 5.0 3.0 5.0 3.0 | 22116.223 | -1 |
| 4.0 3.0 3.0 3.0 | 22115.660 | -9 |
| 7.0 2.0 7.0 2.0 | 22115.784 | 10 |
| 4.0 2.0 3.0 2.0 | 22115.654 | 4 |
| 6.0 2.0 5.0 2.0 | 22115.654 | 8 |
| 3.0 3.0 6.0 3.0 | 22114.630 | -5 |
| 8.0 3.0 7.0 3.0 | 22113.410 | -3 |
| 5.0 1.0 4.0 1.0 | 22112.959 | -1 |
| 2.0 3.0 1.0 3.0 | 22112.461 | 2 |
| 4.0 3.0 4.0 3.0 | 22111.552 | -9 |
| 2.0 3.0 2.0 3.0 | 22110.125 | 2 |

*13 3 10 + 13 2 11 | 13.0 0.0 13.0 0.0 | 8028.838 | 9 | 8028.696 |
11.0 2.0 11.0 2.0	8028.694	-2
15.0 2.0 15.0 2.0	8028.694	-2
12.0 2.0 12.0 2.0	8028.694	-2
14.0 2.0 14.0 2.0	8028.694	-2
13.0 2.0 13.0 2.0	8027.564	1
Table 2 (continued)

<table>
<thead>
<tr>
<th>J′ K′ K′1 − J K K+ F′ I′ F I ν b_{hfs} ν₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>*13 2 11 + 12 3 10 13.0 0.0 12.0 0.0 15371.648 6 15371.095</td>
</tr>
<tr>
<td>11.0 2.0 10.0 2.0 15371.095 1</td>
</tr>
<tr>
<td>15.0 2.0 14.0 2.0 15371.095 1</td>
</tr>
<tr>
<td>12.0 2.0 11.0 2.0 15371.095 1</td>
</tr>
<tr>
<td>14.0 2.0 13.0 2.0 15371.095 1</td>
</tr>
<tr>
<td>13.0 2.0 12.0 2.0 15370.539 -8</td>
</tr>
<tr>
<td>*14 3 11 + 14 2 12 15.0 3.0 15.0 3.0 8468.816 3 8467.269</td>
</tr>
<tr>
<td>14.0 3.0 14.0 3.0 8468.645 3</td>
</tr>
<tr>
<td>13.0 1.0 13.0 1.0 8468.532 3</td>
</tr>
<tr>
<td>16.0 3.0 16.0 3.0 8467.532 -11</td>
</tr>
<tr>
<td>15.0 1.0 15.0 1.0 8467.254 1</td>
</tr>
<tr>
<td>13.0 3.0 13.0 3.0 8467.254 10</td>
</tr>
<tr>
<td>12.0 3.0 12.0 3.0 8466.953 -3</td>
</tr>
<tr>
<td>17.0 3.0 17.0 3.0 8465.993 -2</td>
</tr>
<tr>
<td>14.0 1.0 14.0 1.0 8465.857 1</td>
</tr>
<tr>
<td>11.0 3.0 11.0 3.0 8465.696 -6</td>
</tr>
<tr>
<td>*15 3 12 + 15 2 13 15.0 0.0 15.0 0.0 9187.907 7 9186.207</td>
</tr>
<tr>
<td>13.0 2.0 13.0 2.0 9186.206 -1</td>
</tr>
<tr>
<td>17.0 2.0 17.0 2.0 9186.206 -1</td>
</tr>
<tr>
<td>14.0 2.0 14.0 2.0 9186.206 -1</td>
</tr>
<tr>
<td>16.0 2.0 16.0 2.0 9186.206 -1</td>
</tr>
<tr>
<td>15.0 2.0 15.0 2.0 9184.513 -2</td>
</tr>
<tr>
<td>*16 3 13 + 16 2 14 17.0 3.0 17.0 3.0 10189.876 -1 10187.771</td>
</tr>
<tr>
<td>16.0 3.0 16.0 3.0 10189.664 -9</td>
</tr>
<tr>
<td>15.0 3.0 15.0 3.0 10189.523 -7</td>
</tr>
<tr>
<td>18.0 3.0 18.0 3.0 10188.106 2</td>
</tr>
<tr>
<td>17.0 1.0 17.0 1.0 10187.754 1</td>
</tr>
<tr>
<td>15.0 1.0 15.0 1.0 10187.754 9</td>
</tr>
<tr>
<td>14.0 3.0 14.0 3.0 10187.390 -5</td>
</tr>
<tr>
<td>19.0 3.0 19.0 3.0 10185.984 -11</td>
</tr>
<tr>
<td>16.0 1.0 16.0 1.0 10185.835 10</td>
</tr>
<tr>
<td>13.0 3.0 13.0 3.0 10185.651 11</td>
</tr>
<tr>
<td>*19 4 15 + 19 3 16 19.0 0.0 19.0 0.0 10873.546 0 10872.534</td>
</tr>
<tr>
<td>17.0 2.0 17.0 2.0 10872.534 0</td>
</tr>
<tr>
<td>21.0 2.0 21.0 2.0 10872.534 0</td>
</tr>
<tr>
<td>18.0 2.0 18.0 2.0 10872.534 0</td>
</tr>
<tr>
<td>20.0 2.0 20.0 2.0 10872.534 0</td>
</tr>
<tr>
<td>19.0 2.0 19.0 2.0 10872.522 0</td>
</tr>
</tbody>
</table>

Fig. 1. A 1 MHz scan of the rotational spectrum of 1,2-dichlorobenzene, showing part of the transition J′ K′ K′1 − J K K+ = 431 − 330. I and F quantum numbers are given in the Figure. Polarizing frequency 9986.60 MHz, stagnation pressure 300 Torr (4 × 10⁴ Pa), ca. 1% substance in argon, 500 averaging cycles, sample interval 10 ns, 4096 data points supplemented with 12 288 zeros prior to Fourier transformation.
cleared for overlaying lines and could be interpreted without ambiguity. In addition the accuracy of the frequencies increased. With this method complicated double resonance experiments could be avoided.

The measured frequencies are given in Table 1 for 1,2-DCB and Table 2 for 1,3-DCB.

The waveguide MWFT spectra are very crowded and the intensities are generally low. So for 1,3-DCB as an example 1 R-branch and 6 Q-branch transitions with J quantum numbers ranging from 12 to 20 could be recorded. They were insensitive to χ_{ab}. With the MB MWFT measurements 1 Q-branch and 6 R-branch transitions could be assigned and resolved with J ranging from 3 to 6. Three of these transitions contain information on χ_{ab}. For 1,2-DCB the measurements revealed that some lines are split, which were calculated as singlets by a first order perturbation treatment (without χ_{ab}). Figure 1 gives an example.

So the higher resolution urged for a more detailed analysis.

Analysis

One of us, I. Merke, wrote a program which sets up the Hamiltonian in a coupled basis. The coupling scheme $I_1 + I_2 = I, I + J = F$ is used. The Hamiltonian is based on considerations in [13]. Its matrix representation is diagonal in F. So F submatrices are diagonalized. The program Q2DIG runs on the CRAY X-MP 216. Limitations on computer memory and time forced us to fit only transitions with low J values. Fit parameters are χ_{aa}, χ_{cc}, and χ_{ab} and the hypothetical unsplit line frequencies or alternatively the rotational constants A, B, C and the fourth order centrifugal distortion constants according to Watson's S-reduction.

We fitted the rotational and centrifugal distortion constants according to Watson's A-reduction in the I^*-representation with the program ZFAP4 [14] to all measured transitions. The centrifugal distortion constants are not well determined, but it was not our aim to determine them and their inclusion in the fit improves the reproduction of the spectra with the fitted constants.

The results are given in Table 3. It was possible to reproduce all measured hyperfine components within the measurement uncertainties.
Table 3. Rotational, centrifugal distortion, and quadrupole coupling constants [MHz] of 1,2- and 1,3-dichlorobenzene. Rotational and centrifugal distortion constants determined from all measured transitions according to Watson’s A-reduction, quadrupole coupling constants determined from the transitions not marked with an asterisk in Tables 1 and 2 (see text). Single standard errors in brackets.

<table>
<thead>
<tr>
<th>1,2-Dichlorobenzene</th>
<th>Derived parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1930.0814(40)</td>
<td>8.3415(96)</td>
</tr>
<tr>
<td>B 1431.1695(9)</td>
<td>32.37(12)</td>
</tr>
<tr>
<td>C 821.7517(15)</td>
<td>41.57(52)</td>
</tr>
<tr>
<td>(\Delta J)</td>
<td>3.2(18)</td>
</tr>
<tr>
<td>(\Delta K)</td>
<td>8.7(66)</td>
</tr>
<tr>
<td>(\delta J)</td>
<td>1.99(91)</td>
</tr>
<tr>
<td>(\delta K)</td>
<td>5.0(78)</td>
</tr>
<tr>
<td>(\alpha_{zz})</td>
<td>-41.1153(35)</td>
</tr>
<tr>
<td>(\beta_{cc})</td>
<td>32.7738(61)</td>
</tr>
<tr>
<td>(\gamma_{ab})</td>
<td>±52.41(58)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,3-Dichlorobenzene</th>
<th>Derived parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 2832.3746(14)</td>
<td>10.876(12)</td>
</tr>
<tr>
<td>B 862.8337(7)</td>
<td>38.840(41)</td>
</tr>
<tr>
<td>C 661.2695(4)</td>
<td>33.298(12)</td>
</tr>
<tr>
<td>(\Delta J)</td>
<td>-7.2(36)</td>
</tr>
<tr>
<td>(\Delta K)</td>
<td>92.98(48)</td>
</tr>
<tr>
<td>(\delta J)</td>
<td>0.84(15)</td>
</tr>
<tr>
<td>(\delta K)</td>
<td>0.96(33)</td>
</tr>
<tr>
<td>(\alpha_{aa})</td>
<td>-44.174(12)</td>
</tr>
<tr>
<td>(\beta_{cc})</td>
<td>33.298(12)</td>
</tr>
<tr>
<td>(\gamma_{ab})</td>
<td>±48.181(39)</td>
</tr>
</tbody>
</table>

Discussion

In Table 4 we give a comparison of investigated \(^{35}\)Cl principal axis coupling constants of chlorobenzenes. They vary in a range of 6% for \(\chi_{zz}\) and 10% for \(\chi_{yy}\), which is independent from a rotation transition. Most values differ beyond the standard error limits.

To compare the results with the quantum chemical theory we made ab initio calculations with the Gaussian 86 program (G 86) [16] using the experimental structures of the dichlorobenzenes [3, 6] and chlorobenzene [2]. We included chlorobenzene [17] in our calculations to see which effects occur due to the second chlorine atom in the dichlorobenzenes. Because of the limited computer memory we chose the relatively small 6-31G* basis set [18] and did not take electron correlation into account. To get an impression of the quality of this basis set used for the calculation of the electric field gradients \(g_{gg'}\) \((g, g' = a, b, c \text{ or } x, y, z)\), we calculated an average scale factor \(f\) from all \(f = \chi_{gg'}(\text{exp})/\chi_{gg'}(G 86)\), which correlates the measured \(\chi_{gg'}\) with the calculated electric field gradients. With an ideal basis set \(f\) would be the same for all molecules and \(g, g'\) combinations. As can be seen from Table 4, this averaged scale factor \(f\) allows to reproduce our experimental \(\chi_{gg'}\) within 7%.

The calculation of the angle \(\Theta_{zz}(G 86)\) between the \(z\)-axis of the quadrupole coupling tensor and the \(a\)-axis of the principal inertia system of the molecules is independent of a scale factor. For 1,3-DCB the \(z\)-axis of the experimentally derived quadrupole tensor coincides with the C–Cl bond direction. This coincidence is also the result of our quantum chemical calculations.
(see Table 4). In 1,2-DCB we found from the spectral analysis that the z-axis of the quadrupole tensor is tilted 1.5° out of C−Cl internuclear axis, which supports the hypothesis of a bent bond. The quantum chemical calculations were done with the experimental structure, which has an angle of 30.9° between the C−Cl internuclear axis and the a-axis. The calculated value for $\theta_{za}(G86)$ is 32.1°. This corresponds to a tilt angle of 1.2° and a prediction of a bent bond, which is in reasonable agreement with the experiment. Perhaps the inclusion of electron correlation can still improve the calculations.

Acknowledgement

I. Merke, Ch. Keussen, and H. Dreizler thank the members of the Kiel group for help and discussion, especially H. Krause for discussions about the Gaussian 86 program. Funds of the Deutsche Forschungsgemeinschaft, Fonds der Chemie, and the Land Schleswig-Holstein are gratefully acknowledged. The calculations were made at the computer center of the University of Kiel.

[14] Program ZFAP4, author V. Typke.