A Highly Disordered New Solid Phase Containing Isotropically Reorienting Cations in (CH₃NH₃)₂CdBr₄ Studied by ¹H NMR and Thermal Measurements

Hiroyuki Ishida and Kentaro Takagi
Department of Chemistry, College of General Education, Okayama University, Okayama 700, Japan

Mifune Terashima and Daiyu Nakamura
Department of Chemistry, Faculty of Science, Nagoya University, Nagoya 464-01, Japan

Ryuichi Ikeda
Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Z. Naturforsch. 45a, 1190–1192 (1990); received July 7, 1990

The ¹H spin-lattice relaxation time, linewidth, second moment of ¹H NMR absorption, differential thermal analysis, and differential scanning calorimetry of methylammonium tetrabromocadmate(II) crystals were studied. A new solid phase was found between 482 K and the melting point (493 K). The ¹H NMR measurements revealed the presence of overall reorientation of methylammonium cations in this phase. In the room temperature phase, 120° reorientational jumps of the CH₃ and NH₃⁺ groups were detected.

Introduction

(CH₃NH₃)₂ZnX₄-type (X = halogen) compounds containing discernible tetrahedral (ZnX₄)²⁻ complex anions in crystals have recently attracted attention because of the presence of an unusual solid phase where the cations undergo translational self-diffusion as well as overall rotation [1, 2]. This phase resembles the "ionic plastic phase" found in methylammonium nitrate [3], iodide [4], perchlorate [5], and bromide [6], in which highly disordered ionic motions take place.

(CH₃NH₃)₂CdBr₄ forms monoclinic crystals at room temperature (space group P2₁/c with a = 8.1227, b = 13.4355, c = 11.4194 Å, β = 96.194, and Z = 4 [7]). The room temperature phase of (CH₃NH₃)₂CdBr₄, consisting of isolated tetrahedral CdBr₄²⁻ anions, is isomorphous with the room temperature phase of (CH₃NH₃)₂ZnCl₄ [8, 9], whereas this structure is different from that of (CH₃NH₃)₂CdCl₄, having a perovskite-type layer structure [10]. Rao et al. have found two phase transitions in (CH₃NH₃)₂CdBr₄ crystals at 167 and 400 K by differential scanning calorimetry (DSC) [11]. We have now carried out measurements of the second moment (M₂) of ¹H NMR absorption, the ¹H spin-lattice relaxation time (T₁), the linewidth parameter (T₂*) of ¹H NMR, differential thermal analysis (DTA), and DSC, in the temperature range 80–505 K in order to further clarify the phase transitions and ionic dynamics of methylammonium cations in crystals.

Experiments

DTA and DSC were carried out with a homemade apparatus [12] and a Du Pont 9900 Thermal Analyzer, respectively. Wide-line NMR spectra were recorded at 40 MHz using a JEOL JNM-MW-40S spectrometer. Pulsed NMR spectrometers reported elsewhere [1, 13] were used for the measurements of ¹H T₁ at 8.5, 20, and 32 MHz and T₂* at 32 MHz. A 180°−τ−90° pulse sequence was employed for the determination of T₁, T₂* was determined from the shape of the free induction decay after a 90° pulse.

(CH₃NH₃)₂CdBr₄ was prepared by mixing CH₃NH₃Br and CdBr₃·4H₂O, both dissolved in a ca. 2 mol dm⁻³ hydrobromic acid. The obtained crystals were recrystallized twice from a mixed solvent of methanol-hydrobromic acid (10:1). The purified crystals were identified by taking X-ray powder patterns at room temperature and also elementary analysis. Anal. calc. for (CH₃NH₃)₂CdBr₄: C, 4.84%; H,
2.42%; N, 5.65%; Cd, 22.66%. Found: C, 4.82%; H, 2.42%; N, 5.71%; Cd, 22.65%.

(CH₃ND₃)₂CdBr₄ was prepared from the above sample by threefold crystallization in heavy water. Since the compounds were highly hygroscopic, the purified crystals were handled in a dry bag and dried under vacuum at room temperature for 24 h and then at 60 °C for 24 h before the measurements.

Results and Discussion

DTA curves were recorded for (CH₃NH₃)₂CdBr₄ in the temperature range 80–505 K. On heating the sample, two endothermic anomalies, one large and the other very small, were found at 482 and 178 K, respectively; the sample melted at 493 K. Rao et al. have used DSC and reported phase transitions at 167 and 400 K, and melting at 452 K [11]. These disagreements may be due to differences in the sample manipulation. In order to clarify this, we carried out DTA for three different samples, prepared by the same method, that is, mixing CH₃NH₃Br and CdBr₄·4H₂O, both dissolved in water, but recrystallized from three different solvents, namely, water, ca. 1 mol dm⁻³ hydrobromic acid, and methanol. These samples are named I, II, and III, in the same order. All samples were identified by X-ray diffraction and elementary analysis, which gave the same results within experimental errors. DTA of these samples yielded the same phase transition temperature (Tᵣ) at 482 K and the melting temperature (Tₘ) at 493 K. They showed, however, additional small anomalies at 167 K in sample I, at 416 K in II, and at 221 and 409 K in III. These results suggest that these additional anomalies are not intrinsic but probably due to impurities such as (CH₃NH₃)CdBr₃, (CH₃NH₃)₂CdBr₆, and etc. This presumption is supported by the ¹H NMR experiments, which gave the same results for the three samples and no evidence for phase transitions except that at 482 K. Here, we designate the two solid phases existing above and below 482 K as high- and room-temperature phases (abbreviated to HTP and RTP), respectively. A quite analogous thermal behavior has been observed in (CH₃NH₃)₂ZnCl₄ [1], exhibiting a phase transition at 477 K and the melting at 552 K.

The entropy changes ΔSᵣ (482 K) and ΔSₘ (493 K) determined by DSC were 20 and 34 J K⁻¹ mol⁻¹, respectively. These values are almost the same as the corresponding entropy changes, ΔSᵣ (20 J K⁻¹ mol⁻¹, 477 K) and ΔSₘ (36 J K⁻¹ mol⁻¹, 552 K), determined for (CH₃NH₃)₂ZnCl₄ [1]. Since the present complex and the tetrachlorozincate(II) are isomorphous at room temperature [7–9], one can expect similar ionic motions in the HTP of (CH₃NH₃)₂CdBr₄ and (CH₃NH₃)₂ZnCl₄, where cationic self-diffusion and overall reorientation take place quite frequently [1].

The temperature variation of M₂ is shown in Figure 1. An M₂ of 8.3 G² observed at 112 K indicates that the CH₃ and NH⁺ groups in a cation reorient by 120° about its C–N bond axis (abbreviated C₃ reorientation) more frequently than 10³ Hz [14–16]. With increasing temperature, M₂ decreased gradually and reached 4.5 G² at 473 K. At Tᵣ of 482 K, M₂ decreased suddenly to 0.5 G². This small M₂ implies the onset of overall reorientation of the cation in the HTP [3, 17].

The temperature dependences of ¹H Tᵣ for (CH₃NH₃)₂CdBr₄ and (CH₃ND₃)₂CdBr₄ in the range 90–300 K are shown in Figure 2. The protonated and deuterated salts yielded a Tᵣ minimum of 22 and 39 ms, respectively, both at ca. 106 K. These Tᵣ minima can be attributed to the C₃ reorientation of the cations by referring to the foregoing results of M₂. These minimum values are, however, about twice as large as the calculated or observed ones of 9–10 and 14–15 ms of the same motion of the CH₃NH⁺ and CH₃ND₃⁺ cations, respectively, in crystals [4, 16, 18, 19]. This implies that there exist two kinds of cations in the crystal, in agreement with the crystal structure of the RTP [7], each Tᵣ minimum observed being attributable to one of these cations. The activation energies evaluated from the gradient of the log Tᵣ vs. T⁻¹ curve on the high temperature side of the minimum are (9.6 ± 0.3) and (8.9 ± 0.6) kJ mol⁻¹ for the cationic C₃ reorientations in (CH₃NH₃)₂CdBr₄ and (CH₃ND₃)₂CdBr₄, respectively.

![Fig. 1. The temperature dependence of the ¹H NMR second moment (M₂) observed for (CH₃NH₃)₂CdBr₄. The phase transition temperature (Tᵣ) determined by DTA is indicated by an arrow.](image-url)
Fig. 2. The temperature dependence of the 1H spin-lattice relaxation time (T_1) below room temperature observed in (CH$_3$NH$_3$)$_2$CdBr$_4$ at 20 (\bullet) and 32 MHz (\circ) and (CH$_3$ND$_3$)$_2$CdBr$_4$ at 20 MHz (\triangle).

1H T_1 at 8.5, 20, and 32 MHz and 1H T_2^* at 32 MHz observed for (CH$_3$NH$_3$)$_2$CdBr$_4$ are shown in Figure 3. T_1 showed a frequency dependence above 350 and a broad maximum around 400 K. The frequency dependent T_1 above 350 K is probably due to the onset of a new cationic motion in accordance with the M_2 decrease observed in the same temperature range. A precession about the C–N bond is a possible motional mode for this new motion. On further heating, T_1 decreased suddenly and T_2^* increased from ca. 30 to 140 μs at T_u of 482 K. In the HTP T_1 was frequency dependent, and T_2^* and T_1 observed at 32 MHz increased with temperature, whereas T_1 at 8.5 MHz was almost temperature independent. These relaxation data cannot be assigned to only a single relaxation mechanism, but the cationic overall reorientation seems to contribute mainly to these relaxation processes.

This work was supported by the Joint Studies Program (1988–1989) of Institute for Molecular Science and a Grant-in Aid for Scientific Research No. 02740232 from the Ministry of Education, Japan.