Some Measurements of H/D Polarizability Isotope Effects Using Differential Refractometry

Mary Foster Smith* and W. Alexander Van Hook
Chemistry Department, University of Tennessee, Knoxville, TN 37996, USA

Z. Naturforsch. 44a, 371–375 (1989); received January 17, 1989

Dedicated to Professor Jacob Bigeleisen on the occasion of his 70th birthday

Reprint requests to Dr. W. A. Van Hook, Chemistry Department, University of Tennessee, Knoxville, TN 37996.

Introduction

It is a real pleasure to dedicate this paper to Jacob Bigeleisen. The senior author was privileged to spend a postdoctoral appointment with Bigeleisen at Brookhaven National Laboratory in the early sixties. That experience first exposed him to isotope chemistry, now his long-time field of principal interest. Continuing scientific stimulation and personal communication with Professor and Mrs. Bigeleisen over the years has been and is very much appreciated by the author and by his wife, Nancy, who once lived just down the street from the Bigeleisen home during the Brookhaven years. Both of us place high value on our relationship with Jake and Grace.

The polarizability of a molecule or collection of molecules is a property which describes the response of electric charge distributions within the molecule(s) to an external electric field. Surprisingly, until a recent discussion by Van Hook and Wolfsberg [1] polarizability isotope effects (PIE's) had not been discussed in terms of a difference development, and no detailed physical interpretation of the origins of the effect was available. Polarizabilities and PIE's can be conveniently measured by determining refractive indices and refractive index differences as a function of wavelength, but differential refractive index data of useful precision are lacking in the literature, especially for molecules in the condensed phase. The present study was undertaken to find out whether refractive index difference measurements with simple equipment would suffice to resolve the different components of the PIE.

Since, in first order, the electronic structure of a molecule is independent of isotopic substitution, PIE's are expected to be small. That effect which does exist is a consequence of isotope effects on vibrational properties. In the usual quantum mechanical calculation of the polarizability one considers the perturbation caused by the interaction of an external electric field with the electric dipoles, both permanent and fluctuating, formed by the charges making up the molecule [2]. In one standard method of calculating the PIE [3, 4] the ground state matrix elements for the perturbation are suitably averaged over the ground state vibration. The resulting IE is a consequence of the isotopic differences in ground state vibrational amplitudes. Accurate wave functions and their gradients are required, and the calculations can become numerically elaborate.

The alternative approach to the PIE [1] begins with a well known result obtained by application of second order perturbation theory and is briefly reviewed here. The frequency dependent mean polarizability of a collection of spatially averaged tumbling liquid or vapor phase molecules is given [2] in terms of the sum over squared transition moments to all upper states, (electronic, vibrational, and other).

\[x(v) = \frac{2}{3} \sum_{n} v_{n,0}^{2} \langle \mu_{n,0} \rangle^{2} / (v_{n,0}^{2} - v^{2}) \]

(1)
Here $\langle \mu_{n,0} \rangle$ is the electronic dipole transition moment between the ground (0^{th}) and n^{th} excited state, $\langle \mu_{n,0} \rangle = \int \psi_n \mu \psi_0 \, d\tau$, ψ_n and ψ_0 are wave functions, and μ is the dipole operator. Also, $v_{n,0}$ is the frequency corresponding to the energy difference between ground and excited state, and v is frequency of the electromagnetic field probing the effect. We assume that the frequency of the probing light is much higher than the rotational and other low frequencies and there is no physically significant contribution from such low energy states. Equation (1) can then be approximated [2] using closure to give

$$\alpha(v) = \frac{2}{3} \frac{\hbar}{\lambda} \frac{\langle \mu_{0,0} \rangle^2}{\langle \mu_{0,0} \rangle^2} \frac{v/v_n}{v_n^2 - v^2}. \quad (2)$$

Here $\langle \mu_{0,0} \rangle$ is the dipole moment averaged over the ground state, and $\langle \mu_{0,0} \rangle^2$ is the second moment of the electronic charge distribution also averaged over the ground state. v_n is now a suitably averaged excitation, sometimes taken as the frequency corresponding to the energy difference to ionization. Actually there is little realistic expectation that the parameter v_n will coincide exactly with any of the various excitation frequencies or with the ionization potential. Also complications will ensue unless $v_n^2 \gg v^2$ over the entire range of measurement, and we incorporate that assumption into the present formalism. Therefore the present analysis is limited to molecules which are not colored and/or which have little or no vibronic intensity in the visible region.

To express PIE, due account must be taken of isotope effects on all terms; one obtains in first order (i.e. neglecting all higher order isotope effects)

$$\Delta \alpha(v)/\alpha(v) = \frac{\Delta \langle \mu_{0,0}^2 \rangle/\langle \mu_{0,0} \rangle^2 - 2 \Delta \langle \mu_{0,0} \rangle/\langle \mu_{0,0} \rangle^2}{\langle \mu_{0,0} \rangle^2 - \langle \mu_{0,0} \rangle^2} \frac{(v_n^2 + v^2)}{(v_n^2 - v^2)}. \quad (3)$$

The final approximations leading to (4) recognize that $v_n^2 \gg v^2$, so expansion of the denominator of the second term is warranted, and [5] that $\langle \mu_{0,0}^2 \rangle \gg \langle \mu_{0,0} \rangle^2$. This second approximation is exact for nonpolar molecules where $\langle \mu_{0,0} \rangle = 0$.

$$\Delta \alpha(v)/\alpha(v) = \frac{\Delta \langle \mu_{0,0}^2 \rangle/\langle \mu_{0,0} \rangle^2 - \langle \mu_{0,0} \rangle}{\langle \mu_{0,0} \rangle} \frac{-(\Delta v_n/v_n)}{(1 + 2 v^2/v_n^2)}. \quad (4)$$

The connection between the PIE and the refractive index isotope effects is made through the Lorenz-Lorentz equation [2]

$$f(n) = (n^2 - 1)/(n^2 + 2) = \frac{\pi N}{3 e_0} \frac{\langle \mu_{0,0} \rangle^2}{\langle \mu_{0,0} \rangle}, \quad (5)$$

where n is the refractive index, N the number density of molecules and e_0 the permittivity of the vacuum. Differentiation with respect to isotope and combination with (4) yields

$$\Delta f(n)/f(n) = \frac{\Delta \langle \mu_{0,0}^2 \rangle/\langle \mu_{0,0} \rangle - \Delta V/V - \Delta v_n/v_n}{\langle \mu_{0,0} \rangle} - \frac{2 v^2/v_n^2}{(\Delta v_n/v_n)}, \quad (6)$$

which is of the form $\Delta f(n)/f(n) = A + B v^2$, with slope and intercept given by

$$B = - \frac{2 v_n^2}{v_n^2} (\Delta v_n/v_n) = 2 (\Delta \text{ZPE} - \Delta \text{VIB})/v_n^3 \quad (7)$$

and

$$A = \frac{\Delta \langle \mu_{0,0}^2 \rangle/\langle \mu_{0,0} \rangle - \Delta V/V - \Delta v_n/v_n}{\langle \mu_{0,0} \rangle} - \frac{\Delta \langle \mu_{0,0} \rangle}{\langle \mu_{0,0} \rangle} \Delta v_n/v_n.$$ \quad (8)

In the last part of (7) we take account of the fact that the isotope effect on the average transition frequency must account for vibrational differences in both the ground state (denoted here as ΔZPE, the isotopic difference in zero point energies) and the average excited state (denoted here as ΔVIB). (Notice $v_n = v_{ne} + \text{VIB} - \text{ZPE}$ so $\Delta v_n = v_{n(e)} - v_{n(d)} = \Delta VIB - \Delta \text{ZPE}$, with v_{ne} the frequency corresponding to the energy difference between the origins of the ground and average excited states). To evaluate ΔVIB one recognizes that in theory average upper state vibrational excitations for H and D substituted molecules are available from the distributions of Franck-Condon factors [1]. Also, in (6) and (8) $\Delta V/V = -\Delta N/N$ is the molar volume isotope effect (MVIE), which in many cases is available from the literature. The goal of the present paper is to measure isotopic differences in refractive index to test the development reviewed above.

Experimental, Results

Refractive index difference between the H and D substituted compounds described below were measured at room temperature using a Brice-Phenix [6] differential refractometer dating from the early 1950's. To illuminate the samples we used a mercury lamp fitted with a set of Oriel (Oriel Corp., Stratford, CT) interference band pass filters and made measurements at 404.7, 435.5, 514.5, 576.7 and 690.0 nm. The refractive index difference between sample and reference is accurately proportional to the horizontal displacement, Δd, of a vertical slit image, $\Delta n = k(\lambda) \Delta d$. We calibrated to find $k(\lambda)$ at each wave length by measur-
ing slit image displacements for dilute KCl solutions referenced to pure H$_2$O, and employed least squares fits to the highly accurate and precise refractive index data of Kruis [7] to calculate the proportionality constants, after first fitting literature data [8] on the refractive index of water, n_0, and apparent molar volumes [9] of KCl/H$_2$O solutions, ϕ_v, both at 298.15 K. M is the molarity of the KCl solution, the units employed by the original author [7].

\[n_0 = \sum_{i=0}^{3} A_i (v^2)_i, \]

(9a)

\[\phi_v = \sum_{i=0}^{4} B_i M^{1/2}, \]

(9b)

\[(n^2 - 1)/(n^2 + 2) - (n_0^2 - 1)/(n_0^2 + 2) = (M/1000) \]

(9c)

\[\left[\sum_{i=0}^{2} C_i (v^2)_i - (n_0^2 - 1)/(n_0^2 + 2) \right] \phi_v : 0.1 < M < 0.8 . \]

The A_i, B_i, and C_i parameters are reported in Table 1. Equations (9a), (9b), and (9c) are readily solved for $\Delta n = n - n_0$ and calibration factors obtained. We found an rms error of about 0.2% on the determina-

Table 1. The parameters of (9a), (9b) and (9c).

<table>
<thead>
<tr>
<th>i</th>
<th>$A_i (10^{-28} \text{Hz}^2)$</th>
<th>$B_i (\text{cm}^3 \text{mol}^{-1} \text{M}^{-1/2})$</th>
<th>$C_i (10^{-28} \text{Hz}^2)\text{cm}^3 \text{M}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.321761</td>
<td>26.860</td>
<td>10.9651</td>
</tr>
<tr>
<td>1</td>
<td>5.26672E-04</td>
<td>1.86800</td>
<td>1.19801E-02</td>
</tr>
<tr>
<td>2</td>
<td>-4.81590E-06</td>
<td>-0.34806</td>
<td>4.56817E-05</td>
</tr>
<tr>
<td>3</td>
<td>3.96848E-08</td>
<td>0.60529</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.18110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The $\Delta f(n)/f(n)$, for every protio species listed in Table 3 we least squares fitted refractive index data from the literature [10-12] to a one term dispersion relation of standard form,

\[(n^2 - 1)/(n^2 + 2) = v_n D/(v_n^2 - v^2) \]

(10)

then used the smoothing parameters v_n and D to obtain n at each experimental wavelength, finally obtaining $\Delta f(n)/f(n) = [n^2 - 1]/[n^2 + 2]] \Delta n/n$. These

Table 2. H/D isotope effects at room temperature (25 ± 1°C).

<table>
<thead>
<tr>
<th>System</th>
<th>$v_n/(10^{-28} \text{Hz})$</th>
<th>$Dv_n/(10^{-28} \text{Hz}^2)$</th>
<th>$10^3 \Delta f(n)/f(n)*$ $(\lambda = c/v) / \text{nm}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_6$H$_6$/C$_6$D$_6$</td>
<td>638.2</td>
<td>180.43</td>
<td>4.19 (1) 4.04 (1) 3.77 (2) 3.63 (4) 3.47 (2)</td>
</tr>
<tr>
<td>C$_6$H$_5$CH$_3$/C$_6$D$_5$CD$_3$</td>
<td>649.8</td>
<td>182.89</td>
<td>4.69 (1) 4.60 (1) 4.36 (1) 4.39 (1) 4.20 (1)</td>
</tr>
<tr>
<td>C$_6$H$_5$CH$_2$/C$_6$D$_2$</td>
<td>1144.2</td>
<td>289.62</td>
<td>9.51 (1) 9.46 (1) 9.14 (2) 9.03 (1) 8.78 (1)</td>
</tr>
<tr>
<td>CH$_3$OH/CH$_3$OD</td>
<td>1201.1</td>
<td>240.47</td>
<td>4.35 (1) 4.34 (2) 4.10 (4) 4.03 (3) 3.75 (2)</td>
</tr>
<tr>
<td>CH$_3$OH/CD$_3$OD</td>
<td>1201.1</td>
<td>240.47</td>
<td>9.60 (1) 9.44 (1) 9.02 (2) 8.87 (2) 8.39 (3)</td>
</tr>
<tr>
<td>C$_2$H$_5$O/CH$_3$OD</td>
<td>259.02</td>
<td>245.42</td>
<td>2.50 (2) 2.48 (2) 2.31 (3) 2.25 (2) 2.08 (2)</td>
</tr>
<tr>
<td>CH$_3$COOH/CH$_3$COOD</td>
<td>1107.2</td>
<td>245.42</td>
<td>1.48 (2) 1.43 (2) 1.24 (1) 1.18 (2) 0.87 (1)</td>
</tr>
<tr>
<td>CH$_3$COOH/CD$_3$COOD</td>
<td>1107.2</td>
<td>245.42</td>
<td>3.66 (2) 3.63 (1) 3.27 (1) 3.19 (1) 2.87 (1)</td>
</tr>
<tr>
<td>CHCl$_3$/CDCl$_3$</td>
<td>1041.3</td>
<td>271.00</td>
<td>1.61 (2) 1.65 (2) 1.61 (3) 1.59 (1) 1.54 (1)</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$/CDCl$_2$</td>
<td>1181.9</td>
<td>246.14</td>
<td>4.34 (1) 4.28 (1) 4.12 (1) 4.09 (1) 3.99 (1)</td>
</tr>
<tr>
<td>CH$_3$CN/CD$_3$CN</td>
<td>1181.9</td>
<td>246.14</td>
<td>3.13 (1) 3.07 (1) 2.94 (2) 2.89 (2) 2.83 (1)</td>
</tr>
<tr>
<td>(CH$_3$)$_2$CO/(CD$_3$)$_2$CO</td>
<td>1044.4</td>
<td>224.10</td>
<td>7.18 (1) 7.15 (1) 6.89 (2) 6.82 (2) 6.67 (3)</td>
</tr>
<tr>
<td>(CH$_3$)$_2$SO/(CD$_3$)$_2$SO</td>
<td>1181.9</td>
<td>246.14</td>
<td>1.31 (1) 1.27 (1) 1.16 (1) 1.19 (1) 1.13 (1)</td>
</tr>
</tbody>
</table>

* Parenthetical entries indicate standard deviation in last significant figure.

b Dispersion relation not available; data to right are values of $10^3 \Delta n$.

Refractive index differences were measured for the H/D isomers of the compounds listed in Table 2. The D-labelled compounds were each of nominal isotopic purity 99 + % D; both H and D isomers were analytical grade reagents and used as received from the manufacturer. About 1.5 ml of the H-isomer was placed in each side of the cell, allowed to thermally equilibrate for 15 to 30 minutes, and the image displacement recorded at each wave length at both cell orientations in order to establish a zero reading. The sample on one side of the cell was then replaced with D-isomer and the procedure repeated. The image displacement corresponding to Δn was taken as the difference of differences. Each determination was repeated a minimum of five times and then converted to Δn using k determined as described above. To calculate $\Delta f(n)/f(n)$, the average of all $k(\lambda)$'s, and have used the grand average $k = 0.9952 \times 10^{-2}$ unit per cm of image displacement in the work reported below. To calculate that average, calibrations at 690.0 nm were weighted $1/22$ those at other wave lengths because of eye-strain at that wave length.
Table 3. Least squares analysis of the refractive index isotope effects in Table 2.

\[\Delta f(n)/f(n) = \{ 6 n^2 / [(n^2 - 1)(n^2 + 2)] \} (\Delta n/n) = A + B \cdot v^2. \]

<table>
<thead>
<tr>
<th>System</th>
<th>(10^{-3} A)</th>
<th>(10^{13} \text{ B Hz}^{-2})</th>
<th>(10^9 \sigma^2)</th>
<th>(10^3 \Delta V/V)</th>
<th>(10^3 \Delta \sigma/\sigma)</th>
<th>((\text{AZPE} - \text{AVIB}))</th>
<th>(10^3 \Delta \langle d^2 \rangle / \langle d^2 \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_3\text{C}_6\text{H}_6)</td>
<td>3.08 ± 0.10</td>
<td>2.01 ± 0.26</td>
<td>5.9</td>
<td>2.1 ± 0.2</td>
<td>5.2 ± 0.3</td>
<td>540 ± 70</td>
<td>-1.2 ± 0.8</td>
</tr>
<tr>
<td>(\text{CH}_3\text{C}_6\text{H}_6\text{C}_2\text{D}_4)</td>
<td>3.97 ± 0.07</td>
<td>1.31 ± 0.16</td>
<td>2.5</td>
<td>1.5 ± 0.2</td>
<td>5.5 ± 0.3</td>
<td>360 ± 43</td>
<td>1.2 ± 0.5</td>
</tr>
<tr>
<td>(\text{C}_6\text{H}_1\text{C}_2\text{D}_4)</td>
<td>8.44 ± 0.07</td>
<td>2.05 ± 0.17</td>
<td>2.5</td>
<td>2.2 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>1323 ± 110</td>
<td>-1.1 ± 1.0</td>
</tr>
<tr>
<td>(\text{CH}_3\text{OH}\text{CH}_3\text{OD})</td>
<td>3.52 ± 0.10</td>
<td>1.63 ± 0.26</td>
<td>6.0</td>
<td>-1.64 ± 0.03</td>
<td>1.9 ± 0.2</td>
<td>1130 ± 180</td>
<td>-7.9 ± 1.6</td>
</tr>
<tr>
<td>(\text{CH}_3\text{OH}\text{CD}_2\text{OD})</td>
<td>7.89 ± 0.13</td>
<td>3.21 ± 0.33</td>
<td>9.8</td>
<td>2.64 ± 0.05</td>
<td>10.5 ± 0.2</td>
<td>2227 ± 229</td>
<td>-8.8 ± 2.0</td>
</tr>
<tr>
<td>(\text{CH}_3\text{COOH}\text{CH}_3\text{OD})</td>
<td>1.90 ± 0.06</td>
<td>1.16 ± 0.15</td>
<td>2.0</td>
<td>-1.8 ± 0.3</td>
<td>1.0 ± 0.3</td>
<td>797 ± 103</td>
<td>-6.8 ± 0.9</td>
</tr>
<tr>
<td>(\text{CH}_3\text{COOH}\text{CD}_3\text{OD})</td>
<td>6.7 ± 0.11</td>
<td>1.57 ± 0.28</td>
<td>6.6</td>
<td>1.3 ± 0.0</td>
<td>2.0 ± 0.1</td>
<td>963 ± 171</td>
<td>0.2 ± 0.5</td>
</tr>
<tr>
<td>(\text{CH}_3\text{COOH}\text{CD}_3\text{OD})</td>
<td>2.52 ± 0.10</td>
<td>2.21 ± 0.27</td>
<td>6.2</td>
<td>1.0 ± 0.1</td>
<td>123 ± 50</td>
<td>1357 ± 165</td>
<td>0.2 ± 0.5</td>
</tr>
<tr>
<td>(\text{CH}_3\text{C}_6\text{H}_6\text{CN}\text{CD}_4\text{CN})</td>
<td>5.26 ± 0.01</td>
<td>0.84 ± 0.03</td>
<td>0.1</td>
<td>2.7 ± 0.1</td>
<td>3.0 ± 0.1</td>
<td>570 ± 20</td>
<td>1.5 ± 0.8</td>
</tr>
<tr>
<td>((\text{CH}_3\text{C}_6\text{H}_6\text{CN})\text{CD}_4\text{CN})</td>
<td>6.39 ± 0.05</td>
<td>1.50 ± 0.14</td>
<td>1.6</td>
<td>2.9 ± 0.3</td>
<td>3.0 ± 0.4</td>
<td>843 ± 79</td>
<td>1.5 ± 0.8</td>
</tr>
</tbody>
</table>

Gas phase data as fitted in reference [1].

\(\Delta A\), when combined with the uncertainty in literature MVIE's is reasonably small (about 5% of \(\Delta \sigma/\sigma\) for the present data, on the order of 20% for the literature [12]). The relative errors in the slopes, \(\delta B\), are larger. They generally range between 10 and 20% for the present data, but are much larger for the literature data [1, 12], so large, in fact, that it is not warranted to employ those measurements of \(B\) to resolve vibrational and second moment contributions to the PIE.

In Table 3 we report the parameters obtained by least squares fitting of the data in Table 2 to (6); the resolution of the least squares parameters into the vibrational, MVIE, and second moment contributions; the values derived for the static PIE's; and the associated statistical errors in fits and derived parameters. For purposes of comparison Table 3 also contains similar fits to literature data for several of the permanent gases. Previous condensed phase measurements [12] were not precise enough to give accurate values for \(B\) in fits to (6) and therefore do not permit resolution into vibrational and second moment contributions as described above. However they are precise enough to permit meaningful comparisons of the intercepts.

Discussion

Comparisons of static PIE's (\(\Delta \sigma/\sigma\)), for the liquids studied in this work with earlier but less precise results from the literature [12] show agreement within experimental error. In [1] it was demonstrated that static PIE data can be rationalized in terms of a group contribution scheme. The present results, in good agreement with earlier ones, fit nicely into that scheme. Solution of (6) and (7) shows (\(A \sigma/\sigma\)) = \(A + \Delta V/V\). The relative error in the determination of the intercepts, \(\delta A\), when combined with the uncertainty in literature MVIE's is reasonably small (about 5% of \(\Delta \sigma/\sigma\) for the present data, on the order of 20% for the literature [12]). The relative errors in the slopes, \(\delta B\), are larger. They generally range between 10 and 20% for the present data, but are much larger for the literature data [1, 12], so large, in fact, that it is not warranted to employ those measurements of \(B\) to resolve vibrational and second moment contributions to the PIE.

Vibrational and second moment contributions to the PIE are reported in Table 3. Although comparisons with previous condensed phase results from the literature are not useful (see above), resolutions of gas phase PIE's for H2/D2 [13], CH4/CD4 [14], and H2O/ D2O [15] into vibrational and second moment contributions are included at the bottom of Table 3. These gas phase data are much more precise than those previously available for liquid phase compounds [1, 12]. Examination of Table 3 shows that the vibrational term, \(\text{AZPE} - \text{AVIB}\), is positive. Except for hydrogen it is significantly smaller than that estimated from a simple ZPE model. The vibrational contribution to the static PIE can be calculated from the dispersion parameter for the protio compound, \(v^2\), and \(B\) of (7), \((\text{AZPE} - \text{AVIB})\) \(v^2 = B v^2 / 2\). In all cases it is the largest contributor to PIE. The simple ZPE model assumes a high level density in the excited state and little or no isotope effect on the Franck-Condon excitation factors; in that case \(\text{AZPE} - \text{AVIB} \approx \text{AZPE}\). For H/D substitution at carbon, \(\text{AZPE} \approx 3000 - (1 - 1/\sqrt{2}) \approx 880 \text{ cm}^{-1}\) or \(2.6 \times 10^{13}\) Hz per bond substituted.
which is much larger than the values of ΔZPE − ΔVIB
reported in the table, (except for the case of H/D sub-
stitution on an alcoholic OH group or water, and for
hydrogen). This simple observation, alone, demon-
strates that quantitative understanding will demand
analysis of excited state vibrational effects. PIE is a
probe for that information.

Electronic second moment isotope effects for the
compounds listed in Table 3 are generally negative.
Especially good agreement is found between OH/OD
substituted compounds where 10^3 Δ(μ^2)/μ^2 = −8 ± 1.
To calculate the isotope effect in first approxi-
mation we speculate that the isotope effect should
scale with vibrational amplitude. In that case
Δ(μ_HO^2)/μ_O^2 should be positive for homonuclear
diatomics and simple polyatomics, (where the center
of mass is independent of isotope − CH4/CD4 for
example), and this is so. For H2/D2 the effect deduced
from the refractive index measurements [1, 12, 13]
(Table 3) is in reasonable agreement with accurate
quantum mechanical calculation. If the center of mass
depends on isotopic substitution, however, second
moment isotope effects can easily be inverse. As an
example consider water; the molecular center of mass
lies further out along the line bisecting the DOD angle
than it does along that bisecting HOH. The electronic
center of interaction and the center of mass do not
coincide, and e<r^2>, referenced to the center of mass,
shows an inverse isotope effect. This likely accounts
for the negative values of Δ(μ_HO^2)/μ_O^2 observed
for the hydrogen bonded molecules in Table 3. An
exactly similar argument was used by Dutta-Choud-
hury and Van Hook [16] to rationalize the small and
inverse MVIE’s for condensed phase waters and ices.
As well, it likely accounts for the negative (or small
positive) values of Δ(μ_HO^2)/μ_O^2 for most of the
other compounds in Table 3. However the negative
values found for benzene, which is centrosymmetric,
and cyclohexane, nearly so, are confusing.

Conclusion

Differential measurements of isotopic differences in
refractive index when coupled with data on MVIEs
yield useful information on polarizability isotope ef-
fects (PIE). If carried out at high precision, such mea-
surements can be employed to resolve the various
contributions to the PIE. In the approximation used
in this paper these can be labelled as vibrational (gen-
erally the larger) and second moment contributions.
The experiments we have described, although carried
out carefully, used outdated equipment without ther-
mostatting. Even so they permitted an approximate
but still useful resolution of the PIE into its compo-
nents. With modest elaboration we estimate an im-
provement of about an order of magnitude in experi-
mental precision to be possible. This would permit the
experimental definition of H/D IE’s on second mo-
ments with good precision and may eventually lead to
resolution of the vibrational contribution into its
ground and upper state components. At that level of
precision careful comparison with detailed theoretical
calculation will become appropriate.

This research was sponsored by the National Sci-
ence Foundation under grant CHE-84-13566 and by
the United States Department of Energy, Grant
88ER54374, and by Oak Ridge Associated Universi-
ties under its Science Teachers Research Involvement
for Vital Education (STRIVE) Program. We appreci-
ate the contribution of each of the donors.

mitted).
1954.
(1973).
(1951).
29, 419 (1938).
[12] I. B. Rabinovitch, Influence of Isotopy on the Physico-
chemical Properties of Liquids. Consultants Bureau,
Chem. 84, 2735 (1980).
dyn. 20, 1109 (1988).
6414 (1988).