Dielectric Studies on HgCl₂ : 2 KCl Crystals

S. Sreehari Sastry, V. Venkata Rao* and G. Satyanandam
Department of Physics, Nagarjuna University, Nagarjunanagar-522 510 (A.P.), India

T. F. Sundar Raj
Department of Physics, V.R. Siddhartha Engineering College, Vijayawada-520 006 (A.P.), India

1. Introduction

Studies of the dielectric properties of solids reveal many interesting features. Breckenridge [1] and Zheludev [2] are pioneers in analysing this way the imperfections and defects in ionic crystals. The anisotropy of the dielectric permittivity (ε') and dielectric loss (ε'') was studied for calcite [3] and KTaO₃ and KTaO₃, NaTaO₃ mixed crystals [4] from measurements on different planes of the complex crystals. Such studies also exist for MnO,CoO mixed crystals [5] and thallous halides mixed crystals [6]. It has been confirmed [7] that when HgCl₂ and KCl are mixed in proper proportion, complexes are formed [8]. Much less work [9, 10] has been reported on dielectric measurements of complex crystals of HgCl₂ and KCl. In the present communication we report on the dielectric parameters of complex crystals of HgCl₂:2KCl as functions of frequency and temperature in two mutually perpendicular directions, along with d.c. conductivity.

2. Experimental

The dielectric permittivity (ε') and loss (ε'') were measured using a GR 1615 Capacitance Bridge with a three terminal cell [11] in the frequency range 10²–10⁵ Hz and in the temperature range 304 – 415 K.

3. Results

Crytals of HgCl₂ : 2 KCl were grown from analar grade compounds supplied by B.D.H. (India). HgCl₂ (35.16 g) and KCl (34.34 g) were dissolved in 100 cm³ of water at 293 K as described by Linke [8]. By slow evaporation the crystals where obtained and confirmed by chemical analysis.

The morphology of the crystals has not been found in literature, although HgCl₂ and KCl are known to be orthorhombic [12] and cubic [13], respectively. Detailed structural investigations on these crystals have yet to be completed, however our preliminary X-ray analysis showed that the crystals are orthorhombic. In order to carry out the dielectric measurements, the crystals were cut along two mutually perpendicular surfaces that possessed large surface areas for electrode mounting, the normals to those surfaces being called X and Y directions.

The samples were cut to the size of 7 x 7 x 4 mm³ along each direction, and thin aluminium foils were used as electrodes. All the measurements were made in vacuum (10⁻² Torr) to avoid moisture. The temperature of the sample was controlled within ±1 K by a “Philips plastomatic” temperature controller. The accuracy of the measurements is estimated to be 2% in ε' and about 4% in ε''.

The d.c. conductivity measurement was done with the two electrode method using a Keithley Electrometer (model 610 C).

0932-0784 / 88 / 0800-0741 $ 01.30/0. – Please order a reprint rather than making your own copy.
The directions of the HgCl₂:2KCl is shown in Figs. 1 and 2, respectively. ε' starts with a relatively high value in each direction and gradually decreases with increasing frequency. Even at high frequencies the values of ε' differ much in the two directions. The dielectric loss along the X direction shows a maximum at 10^4 Hz, while in the other direction it shows a continuous decrease, having a dip between 2×10^4 Hz and 5×10^4 Hz. In general, the values of both ε' and ε'' are larger along the X direction.

The temperature variation of ε' and ε'' is shown in Figs. 3–6 for the X and Y directions. Along the X direction there is a slight increase in ε' and ε'' up to 380 K and a peak around 397 K (Figs. 3 and 4). Along the Y direction ε' is constant up to 363 K, jumps at that temperature and thereafter increases (Fig. 5). Figure 6 shows that in the high temperature region ε'' varies similarly.

The activation energy in an Arrhenius plot of the d.c. conductivity is found to be 0.46 eV and 0.28 eV along the X and Y directions, respectively.
4. Discussion

The dielectric permittivity (ε') of a material can be composed of four contributions: electronic, ionic, dipolar and space-charge polarizations. All these may be active at low frequencies. The variation of ε' with frequency indicates which of these contributions are present. Ionic polarization exists below 10^{13} Hz.

The frequency dependence of ε' (Figs. 1 and 2) shows the occurrence of ionic polarization in the crystal.

The frequency dependence of the dielectric loss (ε'') along the X direction exhibits a peak (Fig. 1) whose shape is Debye-like, resulting in the arc plot to be a semi-circle [14]. Further, the loss peak is shifting towards higher frequencies with increasing temperature.
The variation of ε' and ε'' with temperature along the X direction at 5 kHz (Figs. 3 and 4) shows a sharp peak at 397 K, indicating a phase transition. A plot of log ε' vs. log($T_c - T$), where T_c is the Curie temperature, turns out to be linear with -1 as slope, i.e. it shows the Curie-Weiss law dependence in the paraelectric state below 397 K, suggesting the transition to be ferroelectric of second kind [2].

The variation of ε' and ε'' with temperature along the Y direction at 5 kHz (Figs. 5 and 6) shows a sudden rise at 363 K, revealing a phase transition at that temperature. The transition may be of order-disorder type involving a much higher polarization and loss in the disordered phase.

In conclusion, the dielectric anisotropy of HgCl$_2$·2KCl crystals suggests that the nature of the phase transition in the X and Y directions is quite different: along the X direction it is ferroelectric and along the Y direction it is of order-disorder type. Further work on these crystals is in progress.

Acknowledgements

We are indebted to Professor J. Sobhanadri for helpful suggestions and discussions. S. S. and T. F. S. R. are thankful to Professor D. Premaswarup and A. C. Rao, respectively for their constant encouragement. S. S. is grateful to the Council of Scientific and Industrial Research, New Delhi, for financial assistance.