81Br and 127I NQR of Rare Earth Trihalogenides REX_3, $X = \text{Br, I}$*

T. A. Babushkina, A. A. Boguslavsky, and A. G. Dudareva
Institute of Biophysics, Ministry of Health, Moscow, USSR

Z. Naturforsch. 41 a, 190–191 (1986); revised version received November 5, 1985

The 81Br NQR spectra of REBr_3, $\text{RE} = \text{Dy, Ho, Yb, Sm}$, and the 127I NQR spectra of REI_3, $\text{RE} = \text{Dy, Ho, Sm}$, are reported. Additionally 127I NQR data of RbHoI_3, KSmI_3, and RbSmI_3 are given. The line shape of the 127I NQR of HoI_3 was studied in external magnetic fields up to 300 Gauss.

Introduction

Trihalogenides of rare earth elements show some differences in their crystal lattices. The chlorides and bromides of the light rare earth elements LaCl$_3$...GdCl$_3$; LaBr$_3$...PrBr$_3$, are isomorphous to UC$_3$ [1]. The trichlorides of the heavy rare earth elements are isomorphous to AIC$_3$ and the corresponding tribromides crystallize with the FeCl$_3$ type structure [2, 3]. Several tribromides REBr$_3$ (RE = Nd, Eu, Sm, Tb) and the iodides REI$_3$ (RE = La, Ce, Pr, Nd) are isomorphous to PuBr$_3$, whereas the majority of the REI$_3$ shows the BiI$_3$ type structure [4, 5].

NQR is quite a sensitive method with respect to details in the structure of the electrons surrounding the resonating nuclei, and changes in the crystal structure can easily be detected.

Results and Discussion

We have studied several tribromides and triiodides of rare earth elements, and a few compounds formed by rare earth triiodides and alkali iodides. In Table 1 the 81Br and 127I NQR frequencies are listed for $T = 77$ K (in a few cases for 290 K, too).

Since the compounds DyBr$_3$, HoBr$_3$, and YbBr$_3$, are isomorphous to FeCl$_3$ (C$_3$h−R 3, $Z = 6$), a single line 81Br NQR spectrum is expected and the experimental results are in accordance with this expecta-
Table 1. NQR frequencies of 81Br and 127I, quadrupole coupling constants, $e^2 \Phi_{zz} Q h^{-1}$ (127I), and asymmetry parameters η (127I), in some trihalogenides of the rare earth elements. $v(81{Br})$ at $T = 11$ K.

<table>
<thead>
<tr>
<th>Substance</th>
<th>$v(81{Br})$/MHz</th>
<th>$v(127{I})$/MHz, $\Delta m = 1/2 - 3/2$</th>
<th>$v(127{I})$/MHz, $\Delta m = 3/2 - 5/2$</th>
<th>$e^2 \Phi_{zz} Q h^{-1}$/MHz</th>
<th>η (%)</th>
<th>T/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>DyBr$_3$</td>
<td>30.36</td>
<td>83.33</td>
<td>276.7</td>
<td>9.5</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>HoBr$_3$</td>
<td>31.194</td>
<td>82.80</td>
<td>278.3</td>
<td>13.5</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>YbBr$_3$</td>
<td>34.224</td>
<td>85.84</td>
<td>280.7</td>
<td>10.0</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>SmBr$_3$</td>
<td>24.985</td>
<td>72.76</td>
<td>242.5</td>
<td>9.0</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Rbl•HoI</td>
<td>38.19</td>
<td>74.30</td>
<td>248.2</td>
<td>15.0</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>KI•SmI$_3$</td>
<td>41.09</td>
<td>80.64</td>
<td>270.3</td>
<td>12.5</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>3Rbl•2SmI$_3$</td>
<td>34.01</td>
<td>63.29</td>
<td>214.4</td>
<td>24.0</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

is rather small ($\approx 10\%$). This points out that there is a small deviation of the iodine positions from the ideal Bi$_3$ type structure in which the point symmetry of the iodine would be $3 (\eta = 0)$.

For SmI$_3$ the 127I NQR frequency ($1/2 \rightarrow 3/2$) was found to increase very little with decreasing temperature (~ 0.012 kHz/degree). In the range $110 \leq T/K \leq 120$ the intensity of the line becomes very weak and at $T = 77$ K no 127I NQR signal was detected in the range $50 \leq v$/MHz ≤ 150.

HoI$_3$ shows a very strong transition $3/2 \rightarrow 5/2$ and the signal to noise ratio is 100 on the oscilloscope. The 127I Zeeman spectrum on polycrystalline material was studied at 77 K in a field $B_0 = 3 \cdot 10^{-2}$ T ($B_0 \parallel B_{HF}$). It was found that the shape of the band is very similar to that found for Sb in Sb$_2$O$_3$ and Re in NaReO$_4$ [7], but different from the shape expected in case of negligible dipole-dipole interactions. This effect can be observed by comparing the 35Cl Zeeman NQR powder spectrum of NaClO$_3$ and KClO$_3$, where in the latter compound dipolar interactions are very small.

The 127I NQR Zeeman powder spectrum (3/2 \rightarrow 5/2) of SmI$_3$ is shown in Figure 1. It seems to be of interest to elaborate the theory of NQR line shape by incorporating dipole-dipole interactions.