Preface

Since their inception in 1972 the International Symposia on Nuclear Quadrupole Resonance Spectroscopy have been organised in a truly interdisciplinary spirit with equal representation of the physical and chemical aspects of the field: The present symposium was no exception to this rule, the subjects ranging from the application of NQR to the identification of polymorphic forms of pharmaceutical compounds to the observation of the quadrupole coupling of muonium in crystals.

1985 was the 50th anniversary of the first observation of a nuclear quadrupole effect, and the Symposium opened with a most interesting survey of the first fifty years by Professor P. Brix. The following papers illustrate the wide variety of fields in which measurements of nuclear quadrupole coupling constants yield important information: the structure of metals and, especially interesting, of metallic surfaces; the electronic structure of molecules and complexes; the detection of second-order phase transitions and of the formation of incommensurate phases; the study of internal motions in crystalline solids; etc. Even today the nuclear quadrupole moments are seldom known with much precision since usually the field gradient in a simple system must be calculated in order to extract the nuclear moment from the coupling constant. This has implied a continuous effort on the part of theoreticians to judge precisely the large effects on field gradients of very small – from the energy point of view – modifications in the theoretical wave-functions. This theoretical effort is also well represented and includes a survey by a pioneer in the field: R. M. Sternheimer.

The papers have been grouped under the following headings:

- Nuclear quadrupole moments
- Antishielding factors
- Metals and alloys
- Zeeman spectroscopy
- Molecular orbital theory
- Molecules
- Charge transfer complexes
- Phase transitions
- Complex salts
- Glasses
- Relaxation phenomena
- Special methods
- Instrumentation
- Conclusions

The final paper, by J. A. S. Smith, reviews the present situation in NQR spectroscopy and indicates the directions in which new developments are to be expected.

E. A. C. Lucken

Alarich Weiss
suppose that the volume of a nucleus is proportional to its weight A and we may write for the value of r_0, the distance at which the potential energy of the x particle is a maximum, $r_0 = 1.2 \times 10^{-13} \text{A}^{1/3} \text{[cm]}$. At that time, this was a daring generalization because data were scarce [10].

In 1932, Chadwick discovered the neutron [14] and found its collision radius for lead in agreement with the radii of the x-radioactive nuclei, about 7 fm. The neutron was now recognized as a nuclear constituent. Although speculations flourished [6] on what nuclei might look in detail, experiments up to 1935 had given no evidence beyond the picture of very tiny spheres with vaguely defined but measurable radii.

2. Discovery of Nuclear Quadrupole Moments

50 years ago, Hermann Schüler and Theodor Schmidt reported conclusive evidence of non-spherical nuclei. *

Schüler, then 40 years old, was a well known spectroscopist. He worked at the astrophysical observatory in Potsdam. Schmidt (born 1908) had joined him in 1934, coming from Leipzig where he had done postdoctoral work with Heisenberg. At Potsdam there existed a collection of rare earth samples; these had been used for studies of the line spectra of stars. Schüler and Schmidt started a program to study hyperfine structures (hfs) of rare earth elements in order to measure nuclear spins. In the spring of 1935 they put europium into their hollow cathode. The hfs of three resonance lines revealed that both isotopes 151 and 153 had spins $I = 5/2$, and that the ratio of the nuclear magnetic moments μ was 2.2:1. But the hyperfine components did not follow the Landé interval rule exactly (Figure 1). Such deviations had been seen before. They could arise from level perturbations if the magnetic hfs was not small compared to the fine structure. But these should be proportional to μ^2. However, ^{153}Eu with the smaller μ had the larger effect. Schüler and Schmidt therefore concluded that they had found a new nuclear property: a deviation from spherical symmetry. Their publication in Zeitschrift für Physik is dated March 2, 1935 [17]. Another paper from April 28 with similar effects for ^{175}Lu [18], brings the word “electric quadrupole”, which was brought to the authors attention by Delbrück.

Already on June 1, 1935, the dutch journal Physica received a manuscript from Hendrik B. G. Casimir with the correct quantum mechanical interpretation of the Eu hfs [19]. This paper gives the well known definition of the (spectroscopic) quadrupole moment Q and the formula for its interaction energy with the electron core. In his famous prize essay of 1936 “On the Interaction between Atomic Nuclei and Electrons” [20], Casimir elaborated the subject further. He obtained $Q(^{151}\text{Eu}) = +150 \text{fm}^2$, $Q(^{153}\text{Eu}) = +320 \text{fm}^2$, and $Q(^{175}\text{Lu}) = +560 \text{fm}^2$. Assuming a nuclear radius of 7 fm, Casimir came “to the conclusion that the quadrupole moment cannot possibly be due to one proton. Thus it is necessary to assume that it is caused by a group of particles. It might even be that the nucleus as a whole has a prolate shape and that the nucleus as a whole is rotating about its major axis”.

Schmidt had shown in 1937 [21] that the systematic dependence of μ as a function of I (“Schmidt lines”) led to a single particle model of mechanical and magnetic nuclear moments. He applied his model to nuclear quadrupole moments three years later [22]. After subtracting the negative contribution of an odd proton, he plotted a deformation parameter ε for the nuclear core. This plot is shown in Figure 2. It shows the striking predominance of large positive deformations and the now well known influence of shell structure. At that time (1940) it seemed to support an ε particle model of the nucleus [24]. (See [25] for a simple theoretical proof that most nuclei must have positive Q.)

* Personal recollections about these years have been written by Schmidt [15] and Casimir [16].
3. Spectroscopic Quadrupole Moments

3.1. Absolute Measurements

In atomic hfs, the measured electric quadrupole interaction constant called B (by Casimir) contains the product $V_{zz}Q$. In order to evaluate Q, the electric field gradient V_{zz} at the nucleus has to be known. Casimir showed how V_{zz} could be calculated for the p, d... valence electrons. But he made clear that “it is very difficult to estimate the accuracy” of that value. The perturbations of the electron core by the quadrupole moment give rise to shielding and antishielding effects. These were first calculated by Sternheimer [26], the respective correction factors bear his name. Since there will be a contribution by Sternheimer, no further explanation is necessary.

The spectroscopic quadrupole moment Q is one of the few model-independent well defined properties of nuclear states; absolute values are, therefore, very important for nuclear physics. They can be used to calibrate field gradients and thus to determine empirical Sternheimer factors.

The simplest well known electric field gradient is that of the nuclear Coulomb field outside of the nuclear forces. It has only recently been possible to use it for an absolute determination of Q. The experiment was based on the measurements of angular distributions for the Coulomb scattering of aligned 7Li ions with Ni and Sn targets. The only available beams of polarized or aligned heavy ions are those installed by a Marburg-Heidelberg co-operation at our Heidelberg tandem van-de-Graaff accelerators. From the tensor analysing powers, which require only the ratios of differential cross sections for unpolarized and aligned 7Li beams, $Q(^7$Li) = $-3.70(8)$ fm2 was obtained [27]. This is in excellent agreement with $-3.66(3)$ fm2 as deduced [28] from 7LiH, but not with a very recent re-evaluation of the same data [29] which favours -4.06 fm2. With the new absolute Li quadrupole moment [27], V_{zz} can be reliably determined in the bulk [30] and on the surface [31] of materials.

For nuclei heavier than Li, this method will not be easily applicable. Fortunately, a universal possibility exists for measuring Q without “Sternheimer uncertainties”, namely by utilizing the field gradients of those states in muonic atoms where the orbits are outside of the nuclear volume. Great progress has recently been achieved by Leisi and collaborators through their installation of a curved-crystal spectrometer at the muon channel of the SIN at Villigen, Switzerland [32]. Figure 3 shows the amazing accuracy that has been reached in resolving the hfs of the $2p_{3/2}$ level in the muonic 23Na atom. It should be noted that one bin (0.95 eV) corresponds to an instrumental angle of 0.9 arcsec; this is the angle under which Jupiter’s moon Io is seen from the earth. A value $Q(^{23}$Na) = $+10.06(20)$ fm2 has been determined [33], and by the same method $Q(^{25}$Mg) = $+20.1(3)$ fm2 and $Q(^{27}$Al) = $+15.0(6)$ fm2 [34].

Precise spectroscopic ground-state quadrupole moments for eleven rare earth nuclides were determined recently with an uncertainty of less than one percent from the hfs of muonic M X-rays measured with a Ge(Li) spectrometer [35]. They include $Q(^{153}$Eu) = $90.3(10)$ fm2 and $Q(^{155}$Eu) = $241.2(21)$ fm2. Other new absolute data are, e.g., $Q(^{233}$U) = $366.3(8)$ fm2 and $Q(^{235}$U) = $493.6(6)$ fm2 from muonic M and N X-rays [36].

3.2. Relative Hyperfine Data. Europium Revisited

25 years ago, the laser was invented. In the last, say, 10 years, with the development of tunable dye lasers and the availability of on-line mass separators at particle accelerators, optical hfs studies have come back into full bloom (see, e.g. [37]). This is a good example for the “golden rule of experimental physics”: “One has to make something new in order
to see something new" (this remark is from the greatest German physicist of the 18th century, G. C. Lichtenberg, Professor at Göttingen, who lived in Darmstadt from the age of three to twenty-one). Another application of this "golden rule" is collinear laser spectroscopy.

The limited resolution of hyperfine structures due to the Doppler broadening has been the central problem for generations of atomic spectroscopists. Schüler started to fight it in 1930 with his liquid-air cooled hollow cathode [38]. 50 years ago (1935) Jackson and Kuhn [39] and Minkowski [40] were the first to use a "one dimensionally cold gas" by producing atomic beams and observing the light vertical to the beam direction. Kaufman [41] found the important fact that the simple relation

\[\delta E = m v \delta v \quad \text{from} \quad E = m v^2/2 \] (1)

shows how the velocity spread \(\delta v \) in an atomic or ion beam can be highly reduced by acceleration. The Doppler broadening due to the thermal kinetic-energy spread \(\delta E \) of the ion source is thus reduced immensely (of the order of 1000) by observing in the beam direction. The overlap of isotopic hfs is eliminated. Beams can be prepared in a variety of states (see, e.g. [42], [43]). More than about 200 nuclides have already been investigated with this technique.

Only two new examples relevant to quadrupole moments can be presented. Figure 4 is from the first investigation of radium hfs. The on-line collinear fast beam laser spectroscopy was carried out at the ISOLDE mass separator at CERN. It has enabled the determination of \(I, \mu \) and \(Q \) for the isotopes 211, 213, 221, 223, 225, 227 and 229, in addition to isotope shifts in the mass range 208 to 232, with

Fig. 3. Measured and fitted hfs of the 3d_{5/2} - 2p_{3/2} X-ray line in muonic \(^{23}\)Na. The quadrupole interaction in the p-state is dominant. The peaks may, therefore, be identified with transitions to the hfs levels with \(F \) equal 2, 1 + 3, 0 (from left). One bin corresponds to 0.95 eV. From Jeckelmann et al. 1983 [33].
Fig. 4. Hfs in the atomic (Ra I) resonance line for 223Ra. The fluorescence signal is shown as a function of the acceleration voltage ("Doppler scanning"); the frequency of the laser stayed fixed. From Ahmad et al. 1983 [44].

beam intensities as low as 10^4 Atoms/s. The figure shows a strong deviation from the interval rule. The precise interaction constant B of the 1P_1 state for 223Ra and four other Ra isotopes (those with $I > 1/2$) lead to relative Q values of comparable accuracy. It is interesting to note that the spectroscopic quadrupole moments, e.g. $Q(^{223}$Ra) = 120 fm2, have been derived [44] via the intrinsic quadrupole moment Q_0 of the strongly deformed isotope 229Ra, obtained from purely nuclear experiments.

We return to europium with Figure 5. It presents the present knowledge of nuclear magnetic and quadrupole moments for the ground states of odd Eu isotopes. The values for Q show a minimum at the neutron shell closure ($N = 82$) and the big jump between $N = 88$ and 90. The unique situation that Eu has two stable isotopes, that a drastic shape transition just happens for them, and that it is correlated with an opposite change in magnetic moments, was Schüler and Schmidt's good fortune. But "fortune favours the prepared mind"*. As a matter of fact, Racah had shown in 1931 [48] that a nucleus prolonged by one tenth (1 fm) of its radius would cause deviations from the Landé interval rule of the order of the magnetic hfs in $^3P_{3/2}$ levels. At that time, such deviations had not been observed. When they were found, perturbations between close lying levels (see [20]) were assumed as a plausible reason.

4. Intrinsic Quadrupole Moments

4.1. Discovery from Isotope Shifts

The unusual nuclear structure change between neutron numbers 88 and 90 (Fig. 5) has also led to

* I learnt this rule from the great spectroscopist Gerhard Herzberg who studied, worked, and taught at the Technische Hochschule Darmstadt until he had to leave in 1935 – fifty years ago [47].
the discovery of intrinsic quadrupole moments. Schüler and Schmidt’s interferometric studies of the Potsdam rare earth samples again marked the beginning. In 1934 they reported on non-equidistant isotope shifts (IS) for the even samarium isotopes [49]: The $^{150}\text{Sm} - ^{152}\text{Sm}$ shift was nearly twice that between ^{152}Sm and ^{154}Sm. The reason for the “einschneidende Strukturänderung” (sincere change of structure) between ^{150}Sm and ^{152}Sm was brought into connection with the α activity of Sm and later with an α particle model [24].

A quantitative connection with the differently deformed Eu isotopes of the same neutron numbers was made 1946/47 at Göttingen [50] by the following idea: If one assumed that the necessarily spherical symmetric $I = 0$ nuclei ^{150}Sm and ^{152}Sm had about the same intrinsic deformation as ^{151}Eu and ^{153}Eu, then the increase in deformation should yield a deformation contribution to the volume IS calculable from the Eu quadrupole moments. In modern presentation and slightly simplified*, the total IS δE is

$$\delta E = \left(\frac{2 \pi}{3}\right) Z e^2 A L(0) \delta \langle r^2 \rangle + c \delta A + \delta E_{\text{pol}}. \tag{2}$$

Here $A L(0)$ is the change of electron density at the nucleus in the respective atomic transition, the last two terms are the mass and nuclear polarization contributions. With [50]

$$\delta \langle r^2 \rangle = \delta \langle r^2 \rangle_{\text{vol}} + \delta \langle r^2 \rangle_{\text{def}}, \tag{3}$$

the IS of heavy elements should thus be a nuclear radius effect, not a simple volume effect: The rms radius depends upon the deformation as well as the volume.

The quantitative test [54] of this hypothesis was rather complicated. The last two terms in (2) could be neglected for Sm by reasonable arguments. In order to determine $\delta \langle r^2 \rangle$, the ratio $\delta E/AL(0)$ had to be evaluated from the hyperfine structures. But Schüler and Schmidt [49] had only given the hfs of a single line ($\lambda = 5321$ Å) which was not uniquely classified and, amazingly, showed the “wrong” sign of the IS. New measurements had thus to be made for reliably known transitions.

* See, e.g., [51], [52] for finer details and for the relation to the formerly used IS constants C. An elementary derivation of the first term in Eq. (2) may be found in [53].

Figure 6 presents the then best resolved hfs (see [55] for presently obtainable resolution!). In other lines, the odd isotopes 147 and 149 complicated the structure even more. For 5 favourable lines, the relative IS was measured and related to the splitting ΔS (Figure 6). This distance between the centers of gravity of the two groups ($^{154}\text{Sm} + ^{152}\text{Sm}$ and the rest) was primitively determined: Intensity curves registered by a photometer were enlarged, copied on thick paper, cut out and the centers of gravity of the two parts found mechanically. Using ΔS had the advantage that many lines with a badly resolved hfs could be included in the analysis: The distance between the “sharper” component ($152 + 154$) and the “diffuse” rest was easier to measure. Furthermore, available grating measurements for Sm II [56], where the two complexes were resolved, could also be utilized.

Altogether, 87 lines of Sm I and 18 of Sm II were used to determine the IS of levels with known electron configuration [54], [57]. The “wrong” sign of $\lambda 5321$ Å (and other lines) was “explained away” by the assumption of a transition $4f^66s^2 - 4f^55d6s^2$ with corresponding screening effects on s^2 electrons. This interpretation was later confirmed.

Using for $AL(0)$ the Goudsmit-Fermi-Segrè formula, $\delta \langle r^2 \rangle$ from Sm I and Sm II agreed well. The result is presented in Figure 7. Also shown is the large $^{151}\text{Eu} - ^{155}\text{Eu}$ radius change, calculated from the data of [17], which confirmed the postulated quadrupole effect. The deformation contribution to the IS of $^{150}\text{Sm} - ^{152}\text{Sm}$ was found to be about twice that calculated from the ^{151}Eu and ^{153}Eu quadrupole moments (using 120 fm2 and 250 fm2 from [59]). In view of the various uncertainties and
The idea of intrinsic quadrupole moments for $I = 0$ nuclei was at first not generally accepted. It was said that they cannot be measured and therefore do not exist. I remember that C. F. von Weizsäcker at that time made the encouraging remark that “an elephant in a s-state is spherically symmetric but still remains an elephant”. When I met von Weizsäcker recently, he recalled at once that he had said this, but added that the example came from Heisenberg.

The IS between ^{140}Ce and ^{142}Ce was studied next [58] (Figure 7). It confirmed that $\delta \langle r^2 \rangle$ increases abruptly beyond the “magic” neutron number 82, as had been suspected from the Sm data.

A severe uncertainty remained, however, because so far it had always been assumed that only the valence s-electrons contributed to $\Delta L(0)$. The possible contribution of deeper s^2 shells due to a change of screening in the transition was first evaluated [60] for Eu by comparing IS and magnetic hfs carefully; luckily, it turned out to be only a few percent. These measurements yielded an improved radius change $\delta \langle r^2 \rangle$ (151–153) = 0.67(9) fm2 (from $C_{\text{exp}}/C_{\text{th}} = 2.29(29)$, see Figure 7). The most recent value is 0.602(33) fm2 [46] (see also [61]).

Aage Bohr was the first theoretician who took the consequences of intrinsic quadrupole moments (Q_0) seriously. He also pointed out [62] that (for nuclei with $I > 1/2$) the spectroscopic quadrupole moment Q is quite different from Q_0 by the relation

$$Q_0/Q = (I + 1)(2I + 3)/(2I - 1).$$

This holds for strong coupling, i.e. strongly deformed nuclei.

Both the Eu nuclei have $I = 5/2$; thus $Q_0/Q = 14/5$. This enormous factor enters quadratically into the deformation effect of the IS. So, in retrospect, the anomalous shift between ^{150}Sm and ^{152}Sm was not larger than inferred from Eu [54], but actually smaller. “Fortunately”, the big error in using Q instead of Q_0 was partly compensated by other uncertainties. For instance, the volume part $\delta \langle r^2 \rangle_{\text{vol}}$ (Eq. (3)), taken [54] from the 144-148-150 IS was overestimated in the light of our present knowledge (compare Figure 7 with Figure 10).

4.2. Present Status. Samarium Revisited

After 1950, nuclear physics experiments brought convincing evidence of intrinsic quadrupole moments, above all through the rotational motion of strongly deformed nuclei. This development is well known and shall not be discussed. It is presented, e.g., in the Nobel lecture of A. Bohr [63] and in the monograph of Bohr and Mottelson [64]. An early review (as of 1957) was given by Temmer [65].

A striking demonstration of large Q_0 is the splitting of the nuclear giant electric dipole resonance [66], [67]. In Fig. 8 it is seen that this indeed happens from ^{150}Sm to ^{152}Sm, as inferred from the isotope shifts. The lower energy component corresponds to a vibrational absorption of the prolate nucleus along its symmetry axis, the higher in the perpendicular direction. The measured energy splitting yields $Q_0(152\text{Sm}) = 590(40)$ fm2 [68], slightly smaller than $Q_0(153\text{Eu}) = (Q_0/Q) \cdot 241$ fm$^2 = 675$ fm2 [35].
Fig. 8. Total photoneutron cross sections of even Sm isotopes. Single Lorentz fits are shown for 144, 148, 150; two Lorentz lines have been fitted for 152 and 154. From Carlos et al. 1974 [68].

Fig. 9. Hg isotope shifts including results from radioactive detection of optical pumping (1972), laser fluorescence spectroscopy (1977), and collinear laser spectroscopy (1983). The ordinate is practically $\delta \langle r^2 \rangle$, referred to 204Hg. From Otten 1985 [71].

A surprising effect was found about a decade ago by Otten and his collaborators when they studied the isotope shifts of a long chain of radioactive neutron deficient mercury isotopes [69], [70]: the addition of a single neutron may change the nuclear shape drastically. The present available data in Fig. 9 show that the odd isotopes 181,183,185Hg have much larger radii than the adjacent even ones. This is interpreted in the following way [72]: The nuclei with even A are nearly spherical (slightly oblate), the odd ones are strongly prolate ($\beta = 0.25$). In retrospect, therefore, it was by no means trivial that the “removal” of the odd protons from 151,153Eu should lead to similarly deformed 150,152Sm nuclei!

How well a radius change can be interpreted nowadays as a sum of volume and deformation changes (Eq. (3)) is illustrated for Eu by Figure 10. The spherical droplet model of Myers and Schmidt [76] was used to calculate $\delta \langle r^2 \rangle_{\text{vol}}$, the deformation parameter β is then obtained by

$$\delta \langle r^2 \rangle - \delta \langle r^2 \rangle_{\text{vol}} = \delta \langle r^2 \rangle_{\text{def}} = (5/4 \pi) \langle r^2 \rangle \delta \langle \beta^2 \rangle. \quad (5)$$
For a spheroidal nucleus, β is related to the radius $R(\theta)$ by

$$R(\theta) = R_0(1 + \beta Y_2^0(\theta)),$$

where R_0 is the radius of a sphere with equal volume. The value $\beta = 0.32$ for 153Eu (and 152Eu!) from Fig. 10 agrees exactly with $\beta = 0.32$ from $Q_0 = 675 \text{ fm}^2$ (see above) and also with $\beta = 0.31$ from $B(E2)$ values [46]. The analyses as well as the model of a static deformation of 153Eu are, therefore, consistent.

Returning to Sm and Eq. (2), the mass term $c \delta \Delta$ had been neglected by [54] with the argument that the non-equidistant relative IS seemed to be the same for all lines. Modern laser spectroscopy has improved the accuracy immensely. Differences in relative shifts are now well measurable and can be used to eliminate the mass dependent shifts, as shown by [55]. The methods for evaluating $\Delta L(0)$ have also been much refined during the last decades. Recent values for $\delta \langle r^2 \rangle$ are given in Table 1. (They are well within the 25% uncertainty estimated for the old values [54], see Figure 7.)

The ignorance about the contribution δE_{pol} in (2) caused, or should have caused, a permanent bad conscience. Fortunately, polarizabilities of some Sm isotopes have at last been calculated [77] in 1984. Table 1 shows that the differences δE_{pol} are not negligible, not even comfortably small, compared with the present experimental precision.

The correct interpretation of the IS for stable isotopes is finding renewed interest with respect to the measurements on numerous radioactive isotopes. Such data for Sm were presented by two groups [74], [75] at the 7th International Conference on Atomic Masses and Fundamental Constants in Darmstadt-Seeheim 1984.

5. Charge Distribution of Deformed Nuclei

Whereas the spectroscopic quadrupole moment Q is uniquely defined, the intrinsic moment Q_0 and the angular shape parameter β can only be derived with additional nuclear information and model assumptions. But one would like to “see” the intrinsic nuclear charge distribution which gives rise to Q_0 or Q, and such pictures may be useful.

Holmium with $I = 7/2$ was the first strongly deformed nucleus for which the intrinsic shape became well known. Figure 11 is the spectrum of the muonic K_a line of 165Ho, measured with a large Ge(Li) spectrometer. In these low states, the muon moves partly within the nucleus and thus probes the spacial distribution of charge and quadrupole moment. An analysis of the transitions between the levels 4f, 3d, 3p, 2s, 2p and 1s led to five parameters for the intrinsic charge distribution which is drawn in Figure 12. For the ground state, $Q = 349(3) \text{ fm}^2$ and $Q_0 = 747(7) \text{ fm}^2$ were evaluated; the first excited state has nearly the same Q_0 [78]. The charge distribution for 181Ta in Fig. 12 was obtained in a similar way [79].

Strongly deformed $I = 0$ nuclei have a well developed ground-state rotational band. The form factors

<table>
<thead>
<tr>
<th>Isotopes</th>
<th>measured $\delta \langle r^2 \rangle$ [fm2]</th>
<th>calculated $\delta_{\text{pol}} \langle r^2 \rangle$ [fm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>144–148</td>
<td>0.517(27)</td>
<td>-0.006</td>
</tr>
<tr>
<td>148–150</td>
<td>0.303(16)</td>
<td>-0.027</td>
</tr>
<tr>
<td>150–152</td>
<td>0.423(22)</td>
<td>-0.014</td>
</tr>
<tr>
<td>152–154</td>
<td>0.230(12)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11. Muonic $2p-1s$ transition for 165Ho. The vertical lines indicate the hfs components that have been fitted to the measured spectrum. One or two horizontal bars are for transitions where the Ho nucleus was left in the first or second excited state. From Powers et al. 1976 [78].
Fig. 12. Intrinsic charge distributions of permanently deformed nuclei. Lines of constant charge densities of 0.1, 0.5, and 0.9 (for Yb also 1.05) times the central density are drawn in a cross section of the nuclei. There is rotational symmetry around the long (vertical) axis. For Ho and Ta from muonic X-rays alone, for Sm and Yb mainly from electron scattering (see text).

Fig. 13. Intrinsic charge distribution of 154Gd, similar to Figure 12. From Heisenberg and Blok 1983 [81].

Fig. 14. Nuclear octupole deformation ($\beta_3 = 0.30$) superimposed upon a quadrupole deformation ($\beta = 0.25$). R_0 gives the radius of the sphere of equal volume. From Temmer 1958 [65].
1958. As was mentioned, the hfs and IS of a series of Ra isotopes (with half lives between 23 ms and 1600 yr) was measured 25 years later [44], 85 years after the discovery of Ra by Mme Curie. The IS is larger than that inferred from the quite reliably calculable quadrupole deformation effect [82]. Again it is concluded — as earlier for Sm — that this could be due to an additional higher order deformation which increases $\delta(r^2)$ further. A deformation parameter $\beta_3 \approx 0.1$ is inferred; this means an intrinsic pear-shape, less pronounced than Figure 14. The IS further indicates that some odd-A isotopes of Ra have a larger β_3 than neighbouring even ones. All this fits in nicely with evidence for stable octupole deformations in the Ra-Th-region from nuclear spectroscopy [83], [84], [85]. The new radioactive decay mode, where a complete 14C nucleus is emitted [86], [87] from 222,223,224Ra may be connected with this unsymmetric nuclear shape.

Another hot topic in these days is the question whether triaxially deformed nuclear ground states occur. One manifestation of this could be a splitting of the magnetic dipole giant resonance. It has been observed for 164Dy and 174Yb in the Institut für Kernphysik of the TH Darmstadt [88] and may be taken as an indication, though not by itself as a proof, of triaxial deformation [89].

6. Conclusion

Fifty years of nuclear quadrupole moments: they were an exciting chapter in the studies of matter, looking at the atomic nuclei in enormous magnification. It even seems that the field has only now been really opened. Admittedly, this was a rather hurried “European” tour, therefore apologies to all those whose important work has been omitted.

Acknowledgements

[26] R. Sternheimer, Phys. Rev. 80, 102 (1950); 84, 244 (1951).