Boron and Nitrogen Hyperfine Structure in the Microwave Spectrum of Trimethylamine-Borane

W. Kasten and H. Dreizler
Abteilung Chemische Physik im Institut für Physikalische Chemie der Universität Kiel

R. L. Kuczkowski
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109

Z. Naturforsch. 40a, 1262–1264 (1985); received October 2, 1985

We investigated the microwave spectrum of trimethylamine-borane by microwave Fourier transform spectroscopy and determined the quadrupole coupling constants of B and 14N and the rotational and centrifugal distortion constants for the 13B isotopic species. The B–N bond order is discussed and a value for εQq_{210}(14N) is determined.

We investigated the microwave spectrum of trimethylamine-borane, (CH₃)₃N–BH₃, with the higher resolution of microwave Fourier transform (MWFT) spectroscopy to resolve the nitrogen and boron hfs. Previous investigations by Schirdewahn [1], Durig et al. [2] and Cassoux et al. [3] did not obtain this information. The interpretation of the quadrupole coupling constants results in the order of the B–N bond and a value of εQq_{210}(14N) [4] under certain assumptions. Trimethylamine-borane was prepared according to

B₂H₆ + 2N(CH₃)₃ → 2(CH₃)₃N–BH₃.

In the frequency range of our MWFT spectrometer the J = 1–0 and J = 2–1 transitions of (CH₃)₃N–13BH₃ were measured at a temperature of −50 °C and pressures of approximately 0.25 mTorr. The transitions are given in Table 1.

The multiplet patterns were assigned and analysed on the basis of a centrifugally distorted symmetric rotor with the rotational hamiltonian [5] $H_R = BP^2 + (A - B) P^2_R - D_J P^4 - D_K P^2 \mathbb{I} + \mathbb{I}_Q$, containing two coupled nuclei.

The coupling scheme $I_1(14N) + P = F_1, F_1 + I_1(13B) = F$ [6] was used. The Hamiltonian matrix of $H_R + H_Q + H_D$, with H_Q the hamiltonian for the hfs diagonal in K, I_1, I_2, F, M_y and non-diagonal in J and F_1 was diagonalised (program SYM2Q.FOR).

As the J = 2–1 transition is not well resolved the quadrupole coupling constants εQq(13B) and εQq(14N) were calculated from the splittings of the $J = 1–0$ transition only. With fixed εQ's B, D_J, and D_K were fitted to both transitions.

The results are given in Table 2. In Tables 3 and 4 we give measurements and analysis of $J = 1–0$ transitions of two unassigned vibrationally excited states.

Table 1. Observed frequencies v_{obs} [MHz] of the 13B- and 14N-hyperfine components of the $J = 1–0$ and $2–1$ transitions of trimethylamine-borane. The values v_{calc} [MHz] were calculated with the parameters of Table 2. $\Delta v = v_{obs} - v_{calc}$ [MHz].

<table>
<thead>
<tr>
<th>J' – J</th>
<th>K</th>
<th>F'</th>
<th>F</th>
<th>v_{obs} [MHz]</th>
<th>v_{calc} [MHz]</th>
<th>Δv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–0</td>
<td>0</td>
<td>1.5–0</td>
<td>1–1</td>
<td>9 031.692</td>
<td>9 031.704</td>
<td>−0.012</td>
</tr>
<tr>
<td>1–0</td>
<td>1</td>
<td>1.5–1</td>
<td>1–1</td>
<td>9 031.692</td>
<td>9 031.704</td>
<td>−0.012</td>
</tr>
<tr>
<td>1–0</td>
<td>2</td>
<td>1.5–2</td>
<td>1–1</td>
<td>9 031.692</td>
<td>9 031.704</td>
<td>−0.012</td>
</tr>
<tr>
<td>1–0</td>
<td>3</td>
<td>1.5–3</td>
<td>1–1</td>
<td>9 031.692</td>
<td>9 031.704</td>
<td>−0.012</td>
</tr>
<tr>
<td>2–1</td>
<td>0</td>
<td>2.5–1</td>
<td>1–0</td>
<td>18 064.625</td>
<td>18 064.589</td>
<td>0.036</td>
</tr>
<tr>
<td>2–1</td>
<td>1</td>
<td>2.5–2</td>
<td>1–0</td>
<td>18 065.239</td>
<td>18 065.275</td>
<td>−0.036</td>
</tr>
<tr>
<td>2–1</td>
<td>2</td>
<td>2.5–3</td>
<td>1–0</td>
<td>18 065.392</td>
<td>18 065.392</td>
<td>0.000</td>
</tr>
<tr>
<td>2–1</td>
<td>3</td>
<td>2.5–4</td>
<td>1–0</td>
<td>18 065.963</td>
<td>18 065.960</td>
<td>0.003</td>
</tr>
<tr>
<td>± 1</td>
<td>3.5–2</td>
<td>2–1</td>
<td>18 064.714</td>
<td>18 064.717</td>
<td>−0.003</td>
<td></td>
</tr>
<tr>
<td>± 1</td>
<td>3.5–2</td>
<td>3–2</td>
<td>18 065.963</td>
<td>18 065.960</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

Reprint requests to Prof. Dr. H. Dreizler, Abt. Chemische Physik im Institut für Physikalische Chemie der Universität Kiel, Olshausenstr. 40, D-2300 Kiel.

0340-4811 / 85 / 1200-1262 $ 01.30/0. – Please order a reprint rather than making your own copy.
Table 2. Rotational, centrifugal, and hfs coupling constants of trimethylamine-borane, (CH₃)₃¹⁴N—¹⁰BH₃. The hfs analysis is based on J = 1–0 transition only.

<table>
<thead>
<tr>
<th>J'–J</th>
<th>K</th>
<th>F'–F</th>
<th>F₁–F₁</th>
<th>v₁₀</th>
<th>v₁₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–0</td>
<td>0</td>
<td>1–1</td>
<td>9 026.923</td>
<td>9 026.933</td>
<td>-0.010</td>
</tr>
<tr>
<td>1.5–1.5</td>
<td>1–1</td>
<td>9 026.923</td>
<td>9 026.933</td>
<td>-0.010</td>
<td></td>
</tr>
<tr>
<td>0.5–0.5</td>
<td>1–1</td>
<td>9 027.257</td>
<td>9 027.238</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>0.5–1.5</td>
<td>1–1</td>
<td>9 027.257</td>
<td>9 027.238</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>2.5–1.5</td>
<td>1–1</td>
<td>9 027.257</td>
<td>9 027.243</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>2.5–2.5</td>
<td>1–1</td>
<td>9 027.257</td>
<td>9 027.243</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>3.5–2.5</td>
<td>1–1</td>
<td>9 027.964</td>
<td>9 027.983</td>
<td>-0.019</td>
<td></td>
</tr>
<tr>
<td>0.5–0.5</td>
<td>2–1</td>
<td>9 027.964</td>
<td>9 027.989</td>
<td>-0.025</td>
<td></td>
</tr>
<tr>
<td>0.5–1.5</td>
<td>2–1</td>
<td>9 027.964</td>
<td>9 027.990</td>
<td>-0.026</td>
<td></td>
</tr>
<tr>
<td>1.5–0.5</td>
<td>2–1</td>
<td>9 028.098</td>
<td>9 028.097</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>1.5–1.5</td>
<td>2–1</td>
<td>9 028.098</td>
<td>9 028.097</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>1.5–2.5</td>
<td>2–1</td>
<td>9 028.430</td>
<td>9 028.416</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>2.5–2.5</td>
<td>2–1</td>
<td>9 028.430</td>
<td>9 028.416</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>1.5–0.5</td>
<td>0–1</td>
<td>9 029.452</td>
<td>9 029.451</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>1.5–1.5</td>
<td>0–1</td>
<td>9 029.452</td>
<td>9 029.451</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>1.5–2.5</td>
<td>0–1</td>
<td>9 029.452</td>
<td>9 029.451</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Following the procedure given in [7] we calculated from the measured quadrupole coupling constant eQq(¹⁰B) = 2.064(33) MHz the B–N bond order n_B = 0.43(1), the number of electrons donated from the nitrogen to the boron. eQq(²¹⁰B) = -5.39 MHz [8] and <NBH = 105.32(16)° [2, 3] were used. So the B–N bond can be interpreted as given in Figure 1. The low bond order correlates with estimates of the dissociation energy to BH₃ + (CH₃)₃N of 31 to 48 kcal/mol [3].

The next consideration uses the experimental value eQq(¹⁴N) to determine eQq(²¹⁰(¹⁴N)). We follow Townes and Dailey [9] and Gordy [10]. Details are given in [11].

We use
\[
eQq(¹⁴N) = - (u_p / 1 + [3(n_e - 1) - n_p] \xi_N)\]

(1)

with eQq(¹⁴N) the experimental nitrogen quadrupole coupling constant, eQq(²¹⁰(¹⁴N)) the quadrupole coupling constant induced by a 2p₂ electron, \(\xi_N = 0.3\) [12] the shielding constant of nitrogen, \(n_e\) is the mean number of electrons occupying the orbitals directed to the methyl groups, \(n_p\) the mean number of electrons donated by the nitrogen to the boron.
The number of "unbalanced" \(p \) electrons in z-direction i.e. the N-B-bond direction may be expressed by

\[
(Up_i) = - \frac{j}{2} \cdot n_c \cdot a^2_p(\psi_c) \cdot (3 \cos^2 \xi (BNC) - 1) - (2 - n_B) \cdot a^2_p(\psi_B)
\]

(2)

with \(a^2_p(\psi_c) \) the p-electron fraction of the nitrogen orbital directed to the methylcarbon and \(a^2_p(\psi_B) \) that directed to boron. Assuming hybridisation mixing of s and p functions \(\psi_c = s_c + z p_c \) one gets:

\[
a^2_p(\psi_c) = \frac{\mu^2}{1 + \mu^2} \text{ with } \mu^2 = \frac{1}{2} \cdot \cos \xi (CNC)^{-1} \]

(3)

and similar

\[
a^2_p(\psi_B) = \frac{\mu^2}{1 + \mu^2} \text{ with } \mu^2 = \frac{1}{2} \cdot \cos \xi (BNC)^{-1} \]

(4)

with the relation

\[
\cos^2 \xi (BNC) = \frac{1}{3} \left(1 + 2 \cos \xi (CNC) \right)
\]

(5)

and

\[
a^2_p(\psi_c) = \frac{1}{1 + \mu^2}.
\]

(6)

(1) simplifies to

\[
e Q q(\text{14N}) = \frac{3 \cdot a^2_p(\psi_c) \cdot (2 - n_c - n_B)}{1 + [3(n_c - 1) - n_B] \cdot \epsilon_N} \cdot e Q q_{210}(\text{14N})
\]

(7)

Equation (7) describes for \(n_B = 0 \) the quadrupole coupling constant of trimethylamine.

For trimethylamine-borane the bond angle \(\xi \) CNC = 109.0° is known from the structure [3] and the quadrupole coupling constant \(e Q q(\text{14N}) = -2.832 \) MHz is measured in this work.

For trimethylamine the bond angle \(\xi \) CNC = 110.9° is determined by Wollrab and Laurie [14] and the quadrupole coupling constant \(e Q q(\text{14N}) = -5.47 \) MHz was measured by Lide and Mann [15].

Assuming \(n_c \) (trimethylamine) = \(n_c \) (trimethylamine-borane) equation (7) yields two equations for \(n_c \) and \(e Q q_{210}(\text{14N}) \). The results are \(n_c = 1.16 \) and \(e Q q_{210}(\text{14N}) = -9.38 \) MHz. As there are some assumptions we do not give an error limit. The value of \(e Q q_{210}(\text{14N}) \) compares well with that determined from solid nitrogen \(e Q q_{210}(\text{14N} \text{ solid}) = -9.3 \) MHz [16].

Acknowledgements

W. Kasten acknowledges a scholarship of the Fonds der Chemie and R. L. Kuczkowski a travel grant to Kiel from the Rackham Graduate School, University of Michigan. We thank the Deutsche Forschungsgemeinschaft and Fonds der Chemie for funds. The calculations were made at the computer center of the University of Kiel.

Bibliography

[6] l.c. [4], Chapter IX.4 and 5.
[8] l.c. [4], Table 14.2.
[10] l.c. [4], Chapter XIV.
[12] l.c. [4], Table 14.3.