Topological Properties of Benzenoid Systems. XXXVII.
Characterization of Certain Chemical Graphs

Ivan Gutman [1]
Max-Planck-Institut für Strahlenchemie, Mühlheim

Sherif El-Basil
Faculty of Pharmacy, Kasr El-Aini Street, Cairo, Egypt

Z. Naturforsch. 40a, 923–926 (1985); received May 7, 1985

Caterpillar trees, playing a significant role in the aromatic sextet theory of benzenoid hydrocarbons, have been characterized.

Introduction

A caterpillar tree (or simply a caterpillar) is defined [2] to be the tree obtained by attaching vertices of degree one to the vertices of a path P_m. If t_j vertices of degree one $(t_j \geq 0)$ are added to the j-th vertex of P_m, $j = 1, 2, \ldots, m$, then the symbol $P_m(t_1, t_2, \ldots, t_m)$ will be used for the resulting caterpillar:

$$P_m(t_1, t_2, \ldots, t_m)$$

Fig. 1.

The importance of caterpillar trees in the topological theory of benzenoid systems lies in the following. Let B be a non-branched cata-condensed benzenoid hydrocarbon (that is a hydrocarbon containing linearly and angularly condensed rings). If we associate a symbol L to each linearly condensed ring (and also to the two terminal ones) and a symbol A to each angularly condensed ring, then the so-called L, A-sequence [3, 4] is obtained, which is of the form $L^h A L^i A \ldots L^{i_n-1} A L^{i_n}$. Let $C(B)$ be the Clar graph [4, 5] corresponding to B. Let, in addition, the sextet polynomial [6] of B be written in the form

$$1 + s(B, 1) x + s(B, 2) x^2 + \ldots + s(B, m) x^m,$$

where $s(B, k)$ denotes the number of ways in which k mutually resonant aromatic sextets can be placed in B.

It has been shown that [3]

$$s(B, k) = p(P_m(t_1, t_2, \ldots, t_m), k),$$

(1)

where $p(G, k)$ denotes the number of k-matchings (i.e. the number of selections of k independent edges) in the graph G. Furthermore [5]

$$s(B, k) = o(C(B), k),$$

where $o(G, k)$ denotes the number of selections of k independent vertices in the graph G.

The matching polynomial of a graph G with n vertices is defined as [7]

$$\chi(G, x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k p(G, k) x^{n-2k}.$$

(2)

In the case of trees, the matching polynomial coincides with the characteristic polynomial [7]. In particular

$$\chi(P_m(t_1, t_2, \ldots, t_m), x) = \Phi(P_m(t_1, t_2, \ldots, t_m), x),$$

(3)

where $\Phi(G, x)$ denotes the characteristic polynomial of the graph G.

Because of (1), (2) and (3), is B is a non-branched cata-condensed benzenoid system, then the zeros of the polynomial

$$x^{2m} - s(B, 1) x^{2m-2} + s(B, 2) x^{2m-4} - \ldots + (-1)^m s(B, m)$$

(4)

are real numbers and are just the non-zero eigenvalues of the tree $P_m(t_1, t_2, \ldots, t_m)$. Aihara [8] considered the sum of the positive zeros of (4) and used it as a resonance energy. According to (1), (2) and (3), Aihara’s resonance energy of B is (formally)
equal to the Hückel total \(\pi \)-electron energy of \(P_m(t_1, t_2, \ldots, t_m) \). The number of Kekulé structures of \(B \) satisfies the identity [6, 9, 10]

\[
K(B) = 1 + s(B, 1) + s(B, 2) + \ldots + s(B, m).
\]

Having in mind (1), we see that

\[
K(B) = 1 + P_m(t_1, t_2, \ldots, t_m, 1) + P_m(t_1, t_2, \ldots, t_m, 2) + \ldots + P_m(t_1, t_2, \ldots, t_m, m).
\]

Thus the number of Kekulé structures of \(B \) is equal to the identity [6, 9, 10]"
now reads
\[z(P_m(t), x) = (x^{t+1} - t x^{t-1}) z(P_{m-1}(t), x) - x^{2t} z(P_{m-2}(t), x). \]
(12)

For \(m = 1 \) it is elementary to verify that (9) is true. Supposing that (9) holds for \(m = m_0 - 1 \) and \(m = m_0 - 2 \) we can use (12) to show that then (9) is true also for \(m = m_0 \). This suffices as an inductive proof of (9).

Formula (11) is obtained from (9) having in mind that
\[z(P_m(t), x) = \prod_{j=1}^{m} \left(x - 2 \cos \frac{j \pi}{m+1} \right). \]

In order to deduce (10) one has to remember the well known result
\[p(P_m, k) = \binom{m-k}{k}, \]
which substituted back into (9) gives after an appropriate calculation
\[z(P_m(t), x) = x^{t-1} \sum_{j=0}^{[m/2]} \sum_{i=0}^{m-2j} (-1)^i j \binom{m-j}{j} \binom{m-2j}{i} \binom{m-2j}{k-j} \]
Setting \(i + j = k \) and using the identity
\[\binom{m-j}{j} \binom{m-2j}{k-j} = \binom{m-j}{k} \binom{m-2j}{j} \]
we arrive at (10).

Concluding this section we wish to note that in a recent paper [16] Balaban and Tomescu studied benzenoid systems closely related to, but not identical with those corresponding to symmetric caterpillars. Their \((j,k)\)-hexes have the \(L,A\)-sequence \(L^h A L^s A \ldots L^{s-1} A \) \(L^s \) with \(t_1 = t_k = j \) and \(t_2 = t_3 = \ldots = t_{k-1} = j-1 \) if \(j > 1 \) and the \(L,A\)-sequence \(LA^{s-1} L \) if \(j = 1 \).

Recognition of the Matching Polynomial of Symmetric Caterpillars

In various applications of the sextet polynomial a problem can arise, namely to decide whether a given sequence of numbers \(s_1, s_2, \ldots, s_h \) can be interpreted as the coefficients of the sextet polynomial of some benzenoid system. Having in mind (1), we may ask whether a caterpillar tree can be characterized by its matching numbers. In the general case the answer is negative since there exist pairs of caterpillar trees with equal matching polynomials. The classical example for this is the first discovered pair of non-isomorphic cospectral trees – \(P_2(3,3) \) and \(P_3(4,0,1) \) [17].

We proceed now to examine whether for a given \(h \)-tuple of positive integers \((s_1, s_2, \ldots, s_h) \) there is a symmetric caterpillar, such that \(s_k = p(P_m(t), k) \) for all \(k = 1, 2, \ldots, h \) and, in addition, \(p(P_m(t), k) = 0 \) for \(k > h \). We show that this question can be answered and, if such a caterpillar exists, it is unique.

Applying (5) – (7) we conclude that the following two equations must be obeyed:
\[s_1 = m + m t - 1, \]
\[s_1^2 + s_1 - 2 s_2 = m t + 2(t + 1)^2 + (m - 2)(t + 2)^2. \]
In spite of its complicated form, the above system has a unique solution in \(m \) and \(t \). Expressing \(m \) from the first equation and substituting it in the second one we obtain
\[(s_1 - 3) t^2 + (2 s_2 + 4 s_1 - s_1^2 - 5) t + 2 s_2 + 3 s_1 - s_1^2 - 2 = 0, \]
the solutions of which are \(t = -1 \) and
\[t = (s_1^2 - 3 s_1 - 2 s_2 + 2)/(s_1 - 3). \]
(13)

Therefrom,
\[m = (s_1 + 1)(s_1 - 3)/(s_1^2 - 2 s_1 - 2 s_2 - 1). \]
(14)
Hence \(m \) and \(t \) are uniquely determined by \(s_1 \) and \(s_2 \). Knowing \(m \) and \(t \) and using (10), we obtain the number of \(k \)-matchings of \(P_m(t) \) for \(k \geq 3 \) and thus immediately check whether \(p(P_m(t), k) = s_k \) holds for all \(k \). If any of these relations are violated, or if \(m \) and \(t \) (as calculated by (13) and (14)) are not positive integers, then a symmetric caterpillar with the required properties does not exist.

The caterpillar tree determined by the parameters \(m \) and \(t \) is obviously unique.

The expressions for \(t \) and \(m \) given by (13) and (14) do not hold if \(s_1 - 3 = 0 \) or if \(s_1^2 - 2 s_1 - 2 s_2 - 1 = 0 \). It can be shown that this will occur only in the case of \(P_2(1,1) = P_4 \) and \(P_1(3) \). Hence these two graphs are to be considered separately. This is easy since their matching sequences are \((3,1) \) and \((3) \), respectively.

![Fig. 3](image-url)
Acknowledgement

One of the authors (I. G.) thanks the Alexander von Humboldt Foundation for financial support and the staff of the Max-Planck-Institute für Strahlenchemie in Mülheim for assistance and hospitality.