The Chemical Shift of the 29Si Nuclear Magnetic Resonance in a Synthetic Single Crystal of Mg$_2$SiO$_4$

N. Weiden
Institut für Physikalische Chemie III, Technische Hochschule Darmstadt

H. Rager
Fachbereich Geowissenschaften, Philipps-Universität Marburg

Z. Naturforsch. 40a, 126–130 (1985); received November 23, 1984

Dedicated to Professor Dr. Alarich Weiss on the occasion of his 60th birthday

The angular dependence of the chemical shift of the 29Si nuclear magnetic resonance has been measured in a synthetic single crystal of Mg$_2$SiO$_4$ (space group Pbnm, Z = 4). The measurements were performed at room temperature at a frequency of 39.758 MHz using the FT-NMR technique. The eigenvalues of the shift tensor with respect to 29Si in TMS are $\delta_1 = -38.8$ ppm, $\delta_2 = -55.3$ ppm and $\delta_3 = -95.4$ ppm, with the eigenvector y parallel to a and the eigenvector z forming an angle of 7.5° with a. The results show clearly the influence of the individual Si–O bonds on the chemical shift tensor. The chemical shift along the Si–O bond depends in good approximation exponentially on the Si–O bond distance.

Introduction

Experimental investigations of electronic and structural properties of silicate anions in minerals can, in principle, be performed by using the chemical shift effect of the 29Si nuclear magnetic resonance (NMR). Lippmaa et al. [1] have shown that with magic angle sample spinning signals from various silicon environments in polycrystalline solids can be resolved. These authors measured the isotropic shifts of the 29Si NMR transitions in silicates and aluminosilicates. The results are discussed with respect to the degree of condensation of the SiO$_4$ anion present in the particular sample. Grimmer et al. [2] measured the 29Si NMR in polycrystalline silicates using the cross polarization double resonance technique. They found that the shortest Si–O bond corresponds with the largest shift of the 29Si NMR transition.

Smith et al. [3] found a correlation between the isotropic chemical shift of polycrystalline silicates and the averaged Si–O bond strength. We present the first investigation of the angular dependence of the 29Si NMR in a silicate single crystal.

Experimental Procedure and Results

In practice, the chemical shift δ of the NMR transition of a particular spin in a certain sample is expressed with respect to the shift of that spin in a reference compound. Experimentally, δ is found as the normalized difference

$$\frac{(v - v_{\text{ref}})}{v_{\text{ref}}} = \delta,$$

where v and v_{ref} denote the frequencies at which the NMR transition of the spin under consideration occurs in the sample and reference compounds, respectively. A negative sign of δ corresponds to a shift of the NMR transition to lower frequencies v at constant external field.

Reprint requests to Dr. N. Weiden, Institut für Physikalische Chemie III, Technische Hochschule Darmstadt, Petersenstr. 20, D-6100 Darmstadt.

0340-4811 / 85 / 0200-0126 $ 01.30/0. - Please order a reprint rather than making your own copy.
The experiments were performed at room temperature on a commercial Bruker pulse Fourier transform spectrometer at 39.75800 MHz. The signals of the ^{29}Si are rather weak due to the low ^{29}Si abundance of 4.7% and the low gyromagnetic ratio of 8.458 MHz/T. The difficulty of long spin lattice relaxation times was avoided by using a synthetic single crystal doped with 0.027 weight % Cr. The crystal cube has dimensions of $15 \times 15 \times 15$ mm3.

The linewidth of the ^{29}Si NMR transitions was about 6 ppm and the chemical shift δ was measured with respect to ^{29}Si in tetramethylsilan (TMS) with an accuracy of ±1 ppm. The measurements have been carried out with external standard and with no correction for the demagnetising field of the sample. The crystal was rotated in the external magnetic field B_0 around the crystallographic axes a, b, and c using a one circle goniometer. The accuracy for the rotation angle α was ±1°. For the a, b, and c axis rotation α was varied from 0° to 180°. The results are shown in Figs. 1a, b, c where the points denote the experimental values and the solid curves were obtained by a least squares fit using the function

$$
\delta_i (\alpha) = \delta_{i,1} + \delta_{i,2} \cos 2 \alpha + \delta_{i,2} \sin 2 \alpha \quad (i = a, b, c).
$$

(1)

The extremum shift values from Fig. 1 and (1) follow as $\delta_1 = -38.8$ ppm with an angle of ±7.5° to b, $\delta_II = -55.3$ ppm exactly along c, and $\delta_III = -95.4$ ppm with an angle of ±7.5° to a. For the analysis of these data, it has to be considered that with the orientations $B_0 \parallel a$, $B_0 \parallel b$, $B_0 \parallel c$, $B_0 \perp a$, and $B_0 \perp b$ all Si atoms per unit cell are magnetically equivalent resulting in a single ^{29}Si NMR signal (Figures 1a, b). In contrast, with the orientation $B_0 \perp c$ two of the four crystallographically equivalent Si positions become magnetically inequivalent. Thus, the ^{29}Si NMR signal must split into two components except when B_0 is parallel to a or b. This is in agreement with the experimental result (Figure 1c). Because Si is placed on the mirror plane m which is perpendicular to c one eigenvector of the shift tensor is parallel c. The other two eigenvectors lie in the (ab) plane and, hence, can directly be determined from the extremum shift values in this plane. Applying the definitions [6]

$$
|\delta_2 - \delta_{iso}| \equiv |\delta_3 - \delta_{iso}| \equiv |\delta_{y} - \delta_{iso}|,
$$

where

$$
\delta_{iso} = \frac{1}{3} (\delta_1 + \delta_II + \delta_III) = -63.2 \text{ ppm}
$$

Fig. 1a. Chemical shift δ of the ^{29}Si NMR in Mg$_2$SiO$_4$. B was rotated in the (bc) plane from $c \parallel B$ to $-c \parallel B$. The points denote the experimental values to which the solid curve was fitted using (1).

Fig. 1b. Chemical shift δ of the ^{29}Si NMR in Mg$_2$SiO$_4$. B was rotated in the (ac) plane from $a \parallel B$ to $-a \parallel B$. The points denote the experimental values to which the solid curve was fitted using (1).

Fig. 1c. Chemical shift δ of the ^{29}Si NMR in Mg$_2$SiO$_4$. B was rotated in the (ab) plane from $a \parallel B$ to $-a \parallel B$. The points denote the experimental values to which the solid curve was fitted using (1).

Table 1. Direction cosines of the eigenvectors x, y, z of the shift tensor 1 (upper signs) and 2 (lower signs) with respect to the crystallographic axes a, b, c.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>±0.13053</td>
<td>0</td>
<td>0.99144</td>
</tr>
<tr>
<td>b</td>
<td>0.99144</td>
<td>0</td>
<td>±0.13053</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
two chemical shift tensors with the same eigenvalues
\[\delta_x = -38.8 \text{ ppm}, \quad \delta_y = -55.3 \text{ ppm}, \quad \delta_z = -95.4 \text{ ppm} \]
but different orientations of the eigenvectors are obtained. Table 1 shows the direction cosines of the eigenvectors \(\mathbf{x}, \mathbf{y}, \mathbf{z} \) of the two tensors with respect to the crystallographic axes. The upper signs belong to a tensor called tensor 1 and the lower signs belong to tensor 2. Tensor 1 is related to tensor 2 by the space group symmetry operation \(n \).

The isotropic shift of \(-63.2 \text{ ppm}\) is in good agreement with the one reported by Smith et al. [3]. However, the eigenvalues obtained by these authors are in error. This is very likely due to the indirect determination of the eigenvalues from spectra of polycrystalline samples.

Discussion

In solids several interactions may cause a shift of the NMR transition [7]. The most important interactions are the Knight shift [8], the paramagnetic shift [9, 10], and the chemical shift [7, 11, 12]. Nuclear quadrupole [13] and dipole-dipole [14] interactions may further occur yielding beside a shift a broadening and/or a splitting of the NMR lines. In the case of \(^{29}\text{Si}\) with nuclear spin \(I = 1/2 \) there are no quadrupole interactions. Magnetic (Knight and paramagnetic) shift effects do not arise since \(\text{Mg}_2\text{SiO}_4 \) is an insulator and the concentration of the paramagnetic Cr centers is too small. Dipole-dipole interactions are also negligible because the natural abundance of \(^{25}\text{Mg}, \quad ^{29}\text{Si}, \quad ^{17}\text{O} \) is only 10\%, 4.7\% and 0.04\%, respectively. Thus, the observed shift of the \(^{29}\text{Si}\) NMR transition results mainly from the \(\text{Si}-\text{O} \) bonds in the \(\text{SiO}_4 \) anion.

In the discussion of the angular dependence the problem arises to assign tensor 1 and 2 to the two magnetically inequivalent \(\text{SiO}_4 \) tetrahedra. This can be solved by taking into account the bond overlap population \(n(\text{Si} - \text{O}) \) which was calculated by Louisnathan and Gibbs [15] for the olivine silicate anion and the experimental electron density distribution in \(\text{Mg}_2\text{SiO}_4 \) which was determined at room temperature e.g. by Fujino et al. [16] using the x-ray technique. All authors found that the electron density between Si and O increases with decreasing Si–O bond length. A larger electron density between Si and O, however, should produce a larger magnetic screening of the Si nuclei by interaction with the external magnetic field, and, hence, shift the \(^{29}\text{Si}\) NMR transitions to lower frequencies resulting in a larger \(\delta \) value.

Therefore, the tensors 1 and 2 are assigned to the two magnetically inequivalent \(\text{SiO}_4 \) anions in that way that the angle between the \(\text{Si} - \text{O} \) bond which is the shortest in the olivine anion \(\text{SiO}_4 \) and the corresponding eigenvector of \(\delta_z \) is smallest (Figure 2). On the basis of this assignment the chemical shift along the individual \(\text{Si} - \text{O} \) bonds can be calculated and the results are listed in Table 2. Additionally, so called individual \(\delta \) values for the \(\text{SiO}_4 \) units in \(\text{Ca}_6(\text{Si}_2\text{O}_7)/(\text{OH})_6 \) and \(((\text{CH}_3)_4\text{N})_8\text{Si}_8\text{O}_{20} \cdot 69\text{H}_2\text{O} \) [2] are given which can be calculated for axially symmetric shift tensors assuming the largest shift to be parallel to the shortest \(\text{Si} - \text{O} \) bond.

Yosida and Moriya [17] have shown, that the degree of covalence \(\lambda \) of an \(\text{A} - \text{B} \) bonding may be estimated from chemical shift data of either the \(\text{A} \) or the \(\text{B} \) ions. They deduced a relation \(\lambda \sim \delta \). Since \(\lambda \) is proportional to the square of the overlap integral, it is approximately proportional to the repulsive potential between Si and O. This potential can be expressed in the form \(\exp(-r/g) \) according to Born and Mayer's well known theory [18], \(r \) being the...
Table 2. Chemical shift data of the 29Si NMR and bond strength values for several Si–O bond distances. The type of the silicon oxygen tetrahedron according to Lippmaa’s notation is given too.

<table>
<thead>
<tr>
<th>r(Si–O) pm</th>
<th>$\delta^{(29)}$(Si) ppm</th>
<th>$\ln \delta$</th>
<th>s/valence units</th>
<th>Type of silicon oxygen tetrahedron</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.0</td>
<td>-35.0</td>
<td>3.56</td>
<td>0.8532</td>
<td>$s_0 = 1$</td>
<td>Q1</td>
</tr>
<tr>
<td>165.4</td>
<td>-43.7</td>
<td>3.78</td>
<td>0.8867</td>
<td>$r_0 = 160.5$ pm</td>
<td>Q3</td>
</tr>
<tr>
<td>163.5</td>
<td>-63.6</td>
<td>4.15</td>
<td>0.9286</td>
<td>$N = 4$</td>
<td>this work</td>
</tr>
<tr>
<td>161.5</td>
<td>-94.5</td>
<td>4.55</td>
<td>0.9755</td>
<td>$r_0 = 162.5$ pm</td>
<td>Q3</td>
</tr>
<tr>
<td>161.0</td>
<td>-104.7</td>
<td>4.65</td>
<td>0.9876</td>
<td>$N = 4.5$</td>
<td>this work</td>
</tr>
<tr>
<td>160.0</td>
<td>-83.1</td>
<td>4.42</td>
<td>1.0126</td>
<td></td>
<td>Q1</td>
</tr>
<tr>
<td>157.0</td>
<td>-152.0</td>
<td>5.02</td>
<td>1.0922</td>
<td></td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1676</td>
<td></td>
<td>Q1</td>
</tr>
</tbody>
</table>

Fig. 3. Plot of a) $\ln \delta$ versus r(Si–O), b) δ versus r(Si–O), and c) δ versus bond strength s (Θ: $s_0 = 1$, $r_0 = 160.5$ pm, $N = 4$; •: $s_0 = 1$, $r_0 = 162.5$ pm, $N = 4.5$).

interionic distance and ϱ a constant parameter for the Si–O bonds. With $\lambda \sim \delta$ in a first approximation $\delta \sim \exp(-r/\varrho)$ follows.

There are other concepts to correlate δ with structure data as mentioned earlier. Using the “individual” data of Table 2 which enlarge the chemical shift range by a factor of 2 and the distance range considerably these concepts can be checked over a wide range. We, therefore, plotted the chemical shift data i) semilogarithmically against the bond length r (Fig. 3a), ii) against r following the proposal of Higgins and Woessner [19] (Figure 3b), and iii) against the bond strength s as proposed by Smith et al. [3] (Figure 3c). $s = s_0 (r/r_0)^{-N}$ is defined according to Paulings concept of the bond strength where s_0 is the ideal strength of the bond length r_0 and N is a constant which is different for each cation/anion pair. s was calculated using two differ-
ent sets of s_0, r_0, and N (see Tables 1 and 3 in the paper of Brown and Shannon [20]).

The Figs. 3a, 3b, and 3c show that the simple plots δ versus r and, especially, $\ln \delta$ versus r fit the data at least as well as the plot of δ versus the bond strength s. The correlation of isotropic chemical shift values with mean values for the bond strength of the four Si–O bonds in the SiO$_4$ anion has been found to be better than the correlation with mean values for the bond distances by Smith et al. [3]. It may be that the bond strength concept partly compensates effects due to the use of mean values and isotropic chemical shift data. This is not necessary by regarding the Si–O bonds within the SiO$_4$ tetrahedron separately. Of course, more single crystal 29Si NMR data have to be collected to prove this in greater detail. Finally it should be noted that the concept of Lippmaa [1] does not hold for individual chemical shift values along the Si–O bonds (see Table 2).