Temperature Dependence of the 127I-Nuclear Quadrupole Coupling in Tetramethylammonium-periodate (CH$_3$)$_4$NIO$_4$

Dagmar G. Klobasa and Paul K. Burkert
Anorganisch-chemisches Institut der Technischen Universität München

Z. Naturforsch. 39a, 1222 – 1224 (1984); received October 16, 1984

Tetramethylammonium-periodate shows 127I-NMR second order quadrupole splitting with negative temperature coefficients χ for the quadrupole coupling constants and a second order phase transition. From these measurements one can exclude the ratio $(r_{\text{cation}}/r_{\text{anion}}) > 1$ to be the origin of the anomalous temperature dependence in NH$_4$IO$_4$.

1. Introduction

With the identification of anomalous positive temperature coefficients χ for the quadrupole coupling constants $e^2 q Q/h$ and consequently for the electric field gradients in certain ammonium salts, for example NH$_4$ReO$_4$, ND$_4$ReO$_4$ and NH$_4$IO$_4$ [1–4], some attempts were made to explain these observations discussing the reorientational behaviour of NH$_4$, static effects or anomalous temperature dependence of the lattice parameter a, the basis length of the elementary cell [1, 5, 6]. The title compound (CH$_3$)$_4$NIO$_4$ was the first meta-periodate with a ratio $(r_{\text{cation}}/r_{\text{anion}}) > 1$ showing second order quadrupole effects in its solid state 127I-NMR spectra. In the temperature range 301 K < T < 418 K we found a normal, but extremely large negative temperature coefficient χ for the 127I-quadrupole coupling constants [7]. This challenged us to further 127I-NMR measurements of (CH$_3$)$_4$NIO$_4$ at lower temperatures in order to exclude the ratio $(r_{\text{cation}}/r_{\text{anion}}) > 1$ to be responsible for anomalous quadrupole temperature coefficients.

2. Experimental

The 127I-NMR powder spectra of tetramethylammonium-periodate [8] measured with a Bruker FT-NMR CXP 200 spectrometer between 200 K and 300 K are depicted in Figure 1. The last spectrum at 300 K shows the typical second order 127I-NMR quadrupole splitting of the central 127I-NMR transi-

Reprint requests to Dr. Paul K. Burkert, Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstr. 4, D-8046 Garching.

0340-4811 / 84 / 1200-1222 $ 01.30/0. -$ Please order a reprint rather than making your own copy.
tion (+1/2 \leftrightarrow $-1/2$) with asymmetry parameter $\eta \rightarrow 0$. All other spectra with temperatures below $T = 296$ K have additional signals arising from a further quadrupole splitting.

3. Results and Discussion

When lowering the temperature, at least one of the quadrupole coupling constants increases because there are two possibilities in calculating the quadrupole splittings Δv_n:

- **Case A** with $\Delta v_1 = z^* \rightarrow z'$ and $\Delta v_2 = z \rightarrow z''$.
- **Case B** with $\Delta v_3 = z \rightarrow z'$ and $\Delta v_4 = z^* \rightarrow z''$.

By knowing the 127I-Larmor precession frequency v_L at the field $B_0 = 4.698$ T and the measured values of Δv_n for the respective temperatures the quadrupole coupling constants can be calculated for the asymmetry parameter $\eta = 0$. The results for $(\text{CH}_3)_4\text{NI}_04$ are shown in Table 1 and Fig. 2, which lead to the following conclusions:

(i) Independently of the two possible cases the diagram (Fig. 2) shows the appearance of a second phase at $T < 296$ K. The quadrupole coupling constants of this low temperature phase are in the order of 15 to 20 MHz and all 127I-quadrupole interactions of $(\text{CH}_3)_4\text{NI}_04$ have a normal temperature dependence with a negative temperature coefficient α. This means that the condition $r((\text{CH}_3)_4\text{N}^+) > r(\text{IO}_7)$ does not cause anomalous temperature coefficients of the 127I-quadrupole coupling constants.

(ii) A second order phase transition is present independently of the two possible assignments, because there is a continuous change of the high temperature modification of the tetragonal crystal structure [8]. This will change the symmetry properties in the lattice and create two inequivalent positions of the iodine atoms.

Tab. 1. Temperature dependence of second order 127I-NMR quadrupole splitting Δv of $(\text{CH}_3)_4\text{NI}_04$. The quadrupole coupling constants e^2qQ/h are calculated [9] with $\eta = 0$ for both cases A and B using $e^2qQ/h = 4\sqrt{2} |\Delta v_n| v_L$; $v_L = ^{127}$I-Larmor frequency at $B_0 = 4.698$ T.

<table>
<thead>
<tr>
<th>T [K]</th>
<th>Case A</th>
<th></th>
<th>Case B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δv_1 [kHz]</td>
<td>e^2qQ/h [MHz]</td>
<td>Δv_2 [kHz]</td>
<td>e^2qQ/h [MHz]</td>
</tr>
<tr>
<td>300</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>296</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>292</td>
<td>195.9</td>
<td>15.9</td>
<td>205.7</td>
<td>16.2</td>
</tr>
<tr>
<td>288</td>
<td>198.3</td>
<td>16.0</td>
<td>211.2</td>
<td>16.5</td>
</tr>
<tr>
<td>284</td>
<td>201.4</td>
<td>16.1</td>
<td>217.9</td>
<td>16.7</td>
</tr>
<tr>
<td>274</td>
<td>206.9</td>
<td>16.3</td>
<td>233.8</td>
<td>17.3</td>
</tr>
<tr>
<td>230</td>
<td>221.5</td>
<td>16.9</td>
<td>265.5</td>
<td>18.5</td>
</tr>
<tr>
<td>200</td>
<td>227.7</td>
<td>17.1</td>
<td>280.8</td>
<td>19.0</td>
</tr>
</tbody>
</table>
(iii) An extrapolation of the known $e^2 q Q/h$-curve ($\triangle\triangle\triangle$) into the region $T < 300$ K (see Fig. 2) runs through the average values of the quadrupole coupling constants calculated from the two possible cases A and B. From our measurements it is impossible to decide, which of the two cases correctly describes the behaviour in the lattice, where obviously two sorts of distorted IO$_4^-$-tetrahedrons exist. With case B one of the IO$_4^-$-tetrahedra is provided with a small electric field gradient, which is independent of temperature (lower curve $\circ\circ\circ$). The other has a larger electric field gradient, which is temperature dependent. Consequently the IO$_4^-$-tetrahedron is more distorted. If case A prevails, one group of the IO$_4^-$-tetrahedrons changes its field gradient at the iodine atom in the same way as the high temperature modification. This can be seen in Fig. 2, where the \triangle-curve passes continuously into the lower \square-curve. For the other IO$_4^-$-tetrahedron one observes an insignificantly larger electric field gradient. In this preferred version there are smaller deviations in the lattice. Further studies of (CH$_3$)$_4$NI$_4$ together with another group [11] are in progress.

Acknowledgement

We wish to express our gratitude to Professor H. P. Fritz, Institute of Inorganic Chemistry, Technical University of Munich, for financial support of this research.