Lagrangian Formulation of a Consistent Relativistic Guiding Center Theory

H. K. Wimmel
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching bei München

Z. Naturforsch. 38a, 601 – 607 (1983); received February 25, 1983

A new relativistic guiding center mechanics is presented that conserves energy (in time-independent fields) and satisfies a Liouville’s theorem. The theory reduces to Littlejohn’s theory in the non-relativistic limit and agrees to leading orders in $\varepsilon \equiv r_g/L$ with the relativistic theory by Morozov and Solov’ev (which generally lacks a Liouville’s theorem). The new theory is developed from an appropriate Lagrangian and is supplemented by a collisionless relativistic kinetic equation for the guiding centers. Moment equations for guiding center density and energy density are also derived.

1. Introduction

An energy-conserving relativistic guiding center mechanics exists [1]. However, this theory by Morozov and Solov’ev does not generally obey a Liouville’s theorem. A Liouville’s theorem is desirable for several reasons [2], [3], particularly in order to formulate a rational kinetic theory. This paper presents a new relativistic guiding center mechanics that satisfies both an energy theorem and a Liouville’s theorem. In agreement with earlier work [3] we term such a guiding center theory “consistent”. The starting point is a guiding center Lagrangian which is a relativistic generalization of a non-relativistic Lagrangian given by Littlejohn [4]. It also provides for conservation of canonical momenta in cases of spatial symmetry. The theory agrees to leading orders in $\varepsilon \equiv r_g/L$ ($r_g =$ gyro-radius, $L =$ macroscopic length scale) with the relativistic guiding center theory of Morozov and Solov’ev [1]. Relativistic drift scaling (see App. C) is used throughout. From the new guiding center mechanics a collisionless guiding center kinetic equation is derived with the methods of [3]. Moment equations (continuity, energy) are obtained from the kinetic equation, and an effective guiding center current is defined. Our theory reduces to the one given by Littlejohn and the present author [2], [3], [4] in the non-relativistic limit.

It will be seen that the new, consistent, relativistic guiding center mechanics is not Lorentz invariant. Similarly, Littlejohn’s non-relativistic theory [2], [3], [4] is not Galilei invariant. Strong arguments exist to the effect that this lack of Lorentz invariance (or Galilei invariance, respectively) is unavoidable in consistent guiding center theories, because conservation of energy and Lorentz invariance (or Galilei invariance) appear to be incompatible in guiding center theories [5]. On the other hand, non-invariant theories are frequent in plasma physics; for instance, all existing guiding center theories cited in [3] and in this paper are non-invariant. A Galilei invariant, non-relativistic guiding center theory has been formulated, but it lacks an energy theorem [5]. Concerning the principle of relativity this physical law remains, of course, effective. However, any non-invariant theory is of necessity non-unique, as is explained in [5].

The paper is organized as follows. The relativistic guiding center mechanics is given in Sect. 2, while the kinetic theory is presented in Sect. 3. Section 4 presents the conclusions. For reference, App. A collects the main results of Morozov and Solov’ev [1], App. B those by Littlejohn [4], and App. C explains the drift scaling in the relativistic case.

2. Consistent Relativistic Guiding Center Mechanics

In agreement with earlier work [3] we call a guiding center theory “consistent” if it satisfies an energy theorem (in time-independent fields) and a Liouville’s theorem. We start with the guiding center Lagrangian

$$L \equiv (e/c) A^* \cdot v - e \varphi - W_K, \quad (2.1)$$

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License.
with \(L \) depending on the variables \(t, x, v = x, u \) and the parameters \(J \), \(e, m_0, \) and \(c. \) Here \(A^* \) is a modified vector potential, viz.

\[
A^* = A^* (t, x) + \left(m_0 c / e \right) u \cdot \hat{b}(t, x) ,
\]

(2.2)

\(\phi(t, x) \) is the scalar potential, and \(W_K \) is the kinetic energy (including the rest energy) in the form

\[
W_K = m_0 c^2 \left(1 + \frac{u^2}{c^2} + J_B^2 \right)^{1/2} ,
\]

(2.3)

with \(B(t, x) \) the magnetic field strength, \(B(t, x) \) the magnetic field, and \(\hat{b} = B / B \) the unit vector in the direction of \(B. \) The parameter \(J_\perp \) is the perpendicular adiabatic invariant [1] and satisfies the relations

\[
J_\perp = \frac{\gamma^2 w_\perp^2}{2} = \frac{\gamma^2 \mu B}{m_0} ,
\]

(2.4)

with \(\mu \) the (scalar) magnetic moment, \(w_\perp \) the gyration velocity (without the guiding center drift), and

\[
\gamma = \frac{W_K}{m_0 c^2} \left(1 + \frac{u^2}{c^2} + \frac{J_B^2}{c^2} \right)^{1/2} .
\]

(2.5)

The abbreviation

\[
r = u / \gamma
\]

(2.6)

will also be used. However, the interpretation of \(r\) as the “parallel velocity” of the guiding center, in the form \(r = r \cdot \hat{b} \), is not yet here implied; it will follow from one of the Lagrangian equations.

Equation (2.1) is a plausible ansatz. The equations of motion following from this Lagrangian can be proved to be correct by showing them to agree, to leading orders in \(e \), with the theory of Morozov and Solov'ev [1]. See App. A and C. This comparison is easy and is, hence, left to the reader.

The Lagrangian equations are [6]

\[
\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{z}_i} \right] = \frac{\partial L}{\partial z_i} ,
\]

(2.7)

where the \(z_i \) are arbitrary coordinates, and \(L = L(t, z_i, \dot{z}_i) \). Here \([z_i] = \{ x, u \} \) is chosen. As a parameter \(J_\perp \) is not included among the \(z_i \). The conjugated momenta are defined as

\[
p_i = \frac{\partial L}{\partial \dot{z}_i} .
\]

(2.8)

One notes that the momentum \(p \) associated with \(u \) does not exist since \(\partial L / \partial \dot{u} \) vanishes identically. However,

\[
p = \frac{\partial L}{\partial r} = \frac{e}{c} A^* \equiv m_0 u \cdot \hat{b} + \frac{e}{c} A
\]

(2.9)

exists and, according to (2.7), is conserved if \(\partial L / \partial \dot{u} = \nabla L = 0 \). In inhomogeneous fields one or two spatial derivatives of \(L \) vanish at most so that only special components of \(p \), to be expressed in appropriately transformed coordinates, may be conserved. We shall not need to transform to a Hamiltonian representation [4] in what follows. However, the definition of “modified fields” \(B^* \) and \(E^* \) [2], [3] will prove useful, viz.

\[
B^* \equiv \nabla \times A^* \equiv B + \frac{m_0 c}{e} u \cdot \nabla \hat{b} ,
\]

(2.10)

\[
E^* \equiv - \nabla \phi - \frac{1}{c} \frac{\partial A^*}{\partial t} \equiv E - \frac{m_0}{e} u \cdot \frac{\partial \hat{b}}{\partial t} .
\]

(2.11)

It should be observed that time- and space-derivatives are always formed with \(u \) (and \(J_\perp \)) kept constant. The “modified homogeneous Maxwell equations”, viz.

\[
\text{div } B^* = 0 ,
\]

(2.12)

\[
\frac{\partial B^*}{\partial t} = - c \text{ curl } E^* ,
\]

(2.13)

follow and will prove useful. We shall also need the parallel component of \(B^* \), viz.

\[
B^* = \hat{b} \cdot B^* \equiv B + \frac{m_0 c}{e} u \cdot \left(\hat{b} \cdot \nabla \hat{b} \right) .
\]

(2.14)

Let us consider the components of (2.7). The equation

\[
\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{x}_i} \right] = \frac{\partial L}{\partial x_i} ,
\]

(2.15)

yields the relation

\[
r \cdot \hat{b} = r .
\]

(2.16)

The other guiding center equations of motion are obtained from

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{u}} = \frac{\partial L}{\partial \dot{u}} \equiv \nabla L ,
\]

(2.17)

which reads

\[
\frac{e}{c} \frac{dA^*}{dt} = \frac{e}{c} \nabla \left(A^* \cdot r \right) - e \nabla \phi - \nabla W_K .
\]

(2.18)

By using

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{t}} = \frac{\partial L}{\partial \dot{t}} = \frac{e}{c} \nabla \left(A^* \cdot r \right) + (e/c) v \times B^* .
\]

(2.19)
This equation is the starting point of the following. It yields an equation for the guiding center drift velocity \(\mathbf{v}_\perp \) and another one for the "parallel acceleration" \(\mathbf{a}_\parallel \).

By forming the cross product of (2.20) with \(\mathbf{b} \) one obtains for \(\mathbf{v} \):

\[
\mathbf{B}^* \mathbf{v} = \mathbf{r} (\mathbf{E}^* - \nabla W_K) \times \mathbf{b},
\]

and for \(\mathbf{B}^* \):

\[
\mathbf{v} = \mathbf{B}^* \mathbf{v} - (c/e) (e \mathbf{E}^* - \nabla W_K) \times \mathbf{b}.
\]

The latter equation will be needed below. On inserting the explicit expressions for \(\mathbf{E}^* \) and \(\mathbf{B}^* \), and using \(\mathbf{V}_B = \mathbf{v}_B \mathbf{b} \), the guiding center velocity is obtained, viz.

\[
\mathbf{v} = \mathbf{v}_B + \mathbf{a}_B \times \mathbf{b},
\]

or, alternatively,

\[
\mathbf{v} = \mathbf{r} + \mathbf{v}_\perp + \mathbf{v}_\| + \mathbf{v}_\text{CD},
\]

the components of the drift velocity being defined as

\[
\mathbf{v}_\perp \equiv \frac{c}{B^*} \mathbf{E} \times \mathbf{b},
\]

\[
\mathbf{v}_\| \equiv \frac{J_\perp}{2\gamma} \mathbf{b} \times \nabla B \equiv \frac{\mu}{m_0 \Omega_0^*} \mathbf{b} \times \nabla B,
\]

\[
\mathbf{v}_\text{CD} \equiv \frac{u \mathbf{r}}{\Omega_0^*} \mathbf{b} \times \frac{\partial \mathbf{b}}{\partial t},
\]

with the definitions

\[
\Omega_0^* \equiv \frac{e B^*}{m_0 c},
\]

\[
\frac{\partial}{\partial s} \equiv \mathbf{b} \cdot \nabla.
\]

By forming the scalar product of (2.20) with \(\mathbf{B}^* \) one obtains a first expression for \(\mathbf{u} \), viz.

\[
\mathbf{u} = \frac{1}{m_0 B^*} \mathbf{B}^* \cdot (e \mathbf{E}^* - \nabla W_K).
\]

On decomposing \(\mathbf{v} \), viz.

\[
\mathbf{v} = \mathbf{r} + \mathbf{v}_\perp + \mathbf{v}_\| ,
\]

and using (2.21), (2.11), and (2.23) one finally obtains

\[
\mathbf{u} = \frac{e}{m_0} E - \frac{J_\perp}{2\gamma} \frac{\partial B}{\partial s} + u \mathbf{r} \cdot \frac{\partial \mathbf{b}}{\partial s},
\]

with

\[
\frac{J_\perp}{2\gamma} \equiv \frac{\mu}{m_0}.
\]

The relation from (2.24), viz.

\[
\frac{1}{m_0 r} \mathbf{r}_\perp \cdot (e \mathbf{E}^* - \nabla W_K) = u \mathbf{r} \cdot \frac{\partial \mathbf{b}}{\partial s},
\]

is important in deriving (2.33).

Next the energy equation is to be derived. On using (2.19) and (2.32) one obtains

\[
\frac{dW_k}{dt} = e \mathbf{E}^* \cdot \mathbf{v} + \frac{\partial W_k}{\partial t}.
\]

A more explicit expression is found by inserting \(\mathbf{E}^* \) from (2.11) and observing that

\[
\frac{\partial W_k}{\partial t} = \frac{m_0 J_\perp}{2\gamma} \frac{\partial B}{\partial t} \equiv \mu \frac{\partial B}{\partial t},
\]

whence the energy equation reads

\[
\frac{dW_k}{dt} = e \mathbf{E} \cdot \mathbf{v} - \mu \frac{\partial B}{\partial t},
\]

with the definition

\[
\mu \equiv - \frac{m_0 J_\perp}{2\gamma} \mathbf{b} + \frac{m_0 u \mathbf{r}_\perp}{B}.
\]

In order to confirm conservation of energy in time-independent fields we put \(\partial / \partial t = 0 \) in (2.38), to obtain

\[
\frac{d}{dt} (W_K + e \varphi) = 0,
\]

or \(W_K + e \varphi = \text{const along orbits} \).

Liouville's theorem remains to be proved. Generally, the correct phase space volume element \(d\tau \) must be constructed by transforming to a Hamiltonian formalism [4]. Here, however, we use an intelligent guess, viz.

\[
d\tau = \pi B^* d^3x \, du \, dJ_\perp,
\]

and prove \(d\tau = d(\tau / dt) = 0 \). The perpendicular adiabatic invariant \(J \) has now been included among the phase space coordinates \(\{x, u, J_\perp\} \), which makes no difference in the calculation, since \(J_\perp = 0 \).
It is known [3] that $dr = 0$ holds if
\[
\delta \equiv \frac{\partial B^*}{\partial t} + \text{div} (B^* \mathbf{v}) + \frac{\partial}{\partial u} (B^* \dot{u}) = 0 \tag{2.42}
\]
is satisfied. Here \mathbf{v} must be taken from (2.21) and \dot{u} form (2.31). Let us prove (2.42) to be true. One has
\[
\frac{\partial B^*}{\partial t} = B^* \cdot \frac{\partial \mathbf{b}}{\partial t} + \mathbf{b} \cdot \frac{\partial B^*}{\partial t}, \tag{2.43}
\]
div $(B^* \mathbf{v}) = B^* \cdot \nabla \mathbf{v} + e \mathbf{b} \cdot \text{curl} \mathbf{E}^*$
\[
- \frac{c}{e} (e \mathbf{E}^* - \nabla W_K) \cdot \text{curl} \mathbf{b}, \tag{2.44}
\]
\[
\frac{\partial}{\partial u} (B^* \dot{u}) = \frac{1}{m_0} \frac{\partial}{\partial u} [(e \mathbf{E}^* - \nabla W_K) \cdot B^*]. \tag{2.45}
\]
Hence the l.h.s. of (2.42) is transformed to read
\[
\delta \equiv \frac{e}{m_0} \left\{ \frac{\partial E^*}{\partial u} + \frac{m_0}{e} \frac{\partial \mathbf{b}}{\partial t} \right\} \cdot B^* \tag{2.46}
\]
In doing this transformation (2.12) and (2.13) have also been used. Inspection of (2.10) and (2.11) for the “modified fields” shows that both curly brackets in (2.46) vanish. This proves the validity of (2.42) and, hence, that of Liouville’s theorem concerning the dr of (2.41).

In this section we have derived a relativistic guiding center mechanics from a Lagrangian. An energy theorem and a Liouville’s theorem are satisfied. The explicit results are given by (2.16). (2.24) through (2.28), (2.33), (2.38) with (2.39) and (2.40), (2.41) with $dr = 0$ or (2.42). As mentioned, the correctness of this theory to leading orders in c may be proved by comparing with Morozov and Solov’ev’s theory [1] as given in Appendix A (below).

3. Collisionless Relativistic Kinetic Equation for Guiding Centers

We give a collisionless kinetic theory for the relativistic guiding center mechanics established in Section 2. The phase space is five dimensional, with coordinates \(|x_i| \equiv |x, u, J_i, i = 1 \text{ to } 5 \). The volume element in phase space, dr, is given by (2.41) and, hence, is Liouvillean, i.e. $dr = 0$. A guiding center distribution function f is defined by
\[
dN \equiv f \, dr, \tag{3.1}
\]
with $f = f(t, x, u, J)$. N being the number of guiding centers (in phase space). The collisionless kinetic equation expresses the conservation of dN in a volume element dr that moves with the guiding centers, i.e.,
\[
\frac{d}{dt} (dN) \equiv \frac{d}{dt} (f \, dr) = 0. \tag{3.2}
\]
This equation can be reformulated [3] to read
\[
\frac{\partial}{\partial t} (B^* f) + \text{div} (B^* f \mathbf{v}) + \frac{\partial}{\partial u} (B^* f \dot{u}) = 0. \tag{3.3}
\]
This form of the kinetic equation holds independent of whether dr is Liouvillean or not. Since our dr is Liouvillean (3.3) can be simplified to read
\[
\frac{df}{dt} = \frac{df}{dt} + r \cdot \nabla f + \dot{u} \frac{df}{du} = 0. \tag{3.4}
\]
Here \mathbf{v} must be taken from (2.24) through (2.28) and \dot{u} from (2.33). The transition from (3.3) to (3.4) follows from (2.42). In time-independent fields equilibrium distribution functions have the form
\[
f_0 = f_0 (W_K + e \varphi, J_\perp, \text{other integrals of the motion}). \tag{3.5}
\]
When moment equations are to be derived from the kinetic equation the use of (3.3) is to be preferred. We shall derive the equation of continuity and an energy equation. On defining the guiding center density
\[
n \equiv \int \, dr, \tag{3.6}
\]
and the guiding center flux density
\[
I \equiv \int \, dr, \tag{3.7}
\]
with the definition of the volume element in velocity space as
\[
\text{d}n/\text{d}t + \text{div} I = 0. \tag{3.8}
\]
integration of (3.3) over du $\text{d}J_\perp$ yields
\[
\frac{\partial n}{\partial t} + \text{div} I = 0. \tag{3.9}
\]
Here, one has assumed that $(B^* \dot{u} f) \rightarrow 0$ for $u \rightarrow \infty$. The ranges of integration are, of course, $-\infty < u < +\infty$ and $0 \equiv J_\perp < \infty$.
In order to formulate the energy equation let us define the kinetic energy density
\[
D \equiv \int \, dr, \tag{3.10}
\]

H. K. Wimmel • A Consistent Relativistic Guiding Center Theory
the kinetic energy flux density, viz.
\[F_1 \equiv \int \tau f \frac{dW_K}{dt}, \]
(3.11)
and the magnetic moment density
\[M \equiv \int \tau f \mu, \]
(3.12)
with \(\mu \) to be taken from (2.39).

Multiplying (3.3) by \(W_K du, dJ, \) and integrating over \((u, J) \) space yields
\[\frac{\partial D}{\partial t} + \text{div} F_1 = \int \tau f \frac{dW_K}{dt}, \]
(3.13)
or [Eq. (2.38)]
\[\frac{\partial D}{\partial t} + \text{div} F_1 = e E \cdot r - M \cdot \frac{\partial B}{\partial t}. \]
(3.14)

It is desirable to transform (3.14) so that the new right-hand side has the form \(E \cdot j_{ef} \), where \(j_{ef} \) is the “effective guiding center current density” [3]. In this way, the guiding center theory can be associated with Maxwell’s equations. By using
\[\frac{\partial B}{\partial t} = -c \text{curl } E, \]
(3.15)
and doing a partial differentiation one obtains
\[\frac{\partial D}{\partial t} + \text{div } F = E \cdot (e \Gamma + c \text{ curl } M), \]
(3.16)
with the definition of the effective current density (of one single guiding center component) as
\[j_{ef} \equiv e \Gamma + c \text{ curl } M \]
(3.17)
and of the effective energy flux density as
\[F \equiv F_1 + c M \times E. \]
(3.18)
The total electric current density of the guiding center plasma is obtained by
\[j_{tot} \equiv \sum_x (e_x \Gamma_x + c \text{ curl } M_x), \]
(3.19)
i.e. by summing over the plasma components, e.g. \(x = i, e \). Then
\[\sum_x (\frac{\partial D_x}{\partial t} + \text{div } F_x) = E \cdot j_{tot}. \]
(3.20)
The energy equation for the electromagnetic fields is given by
\[\frac{1}{8\pi} \frac{\partial}{\partial t} (E^2 + B^2) + \frac{c}{4\pi} \text{div} (E \times B) = -E \cdot j_{tot}. \]
(3.21)
Summing (3.20) and (3.21) yields conservation of total energy. The results of this section are very similar to those obtained in the non-relativistic case [3].

4. Conclusion

A consistent relativistic guiding center mechanics has been derived from a guiding center Lagrangian. It conserves energy in time-independent fields and obeys a Liouville’s theorem for an appropriate volume element in guiding center phase space. The new theory agrees to leading orders in \(\varepsilon \equiv r_0/L \) with the earlier theory by Morozov and Solov’ev [1] and reduces to Littlejohn’s theory [2, 3, 4] in the non-relativistic limit. Collisionless kinetic theory and moment equations have also been considered. Drift scaling was assumed throughout. The new theory and the other theories mentioned all lack Lorentz invariance, of Galilei invariance, respectively; the structural reason for this has been explained in [5].

The new relativistic guiding center theory can find application to run-away electrons in laboratory plasmas and to relativistic particles in space. In fact, run-away drifts in time-independent electromagnetic fields were considered by Zehrfeld et al. [7] on the basis of the earlier relativistic guiding center theory [1]. If needed, the guiding center kinetic equation of Sect. 3 could be supplemented by a relativistic collision term.

The Lagrangian formalism introduced by Littlejohn [4] in the non-relativistic problem and generalized to the relativistic one here is not only concise and elegant; it also makes clear the guiding center equations of motion are strongly interdependent. In particular, one would destroy some or all symmetries of the theory (or even create a singularity at \(u \rightarrow 0 \)) if one tried to approximate the drift velocity \(r^* \) by dropping one or several of the magnetic drift velocities, viz. \(r_\perp^*, r^*, \) and/or \(r_\parallel^* \). This point was earlier discussed in some detail in the case of the non-relativistic guiding center theory [3].

This paper has limited itself to leading-order approximations in \(\varepsilon \). Higher-order terms, e.g. \(r_\perp^* \), are including as far as they are necessary for the required symmetries of the theory, i.e. the conservation theorems. Littlejohn’s non-relativistic work [4] is, within its subject, more comprehensive in that the guiding center Lagrangian is systematically derived from the particle Lagrangian up to higher orders in \(\varepsilon \). This has not been done in our relativistic case here since it was not needed for proving the correctness of our theory. If desired, this could be done along the lines followed by Littlejohn [4] in the non-relativistic case.
Acknowledgements

This work was motivated by Littlejohn’s paper on *Variational Principles of Guiding Center Motion* [4]. I am very grateful to R. G. Littlejohn for making this paper available to me prior to publication. I also thank D. Correa Restrepo for pointing out [1].

Appendix A

Summary of the Relativistic Guiding Center Theory by Mozorov and Solov’ev

The theory by Mozorov and Solov’ev [1] is defined by the following results:

\[J_\perp = 0, \]
\[W_K = e E \cdot v + \frac{m_0 J_\perp}{2 \gamma} \frac{\partial B}{\partial t}, \]
\[v = \dot{v} \cdot b + v_E + v_{VB} + v_x, \]

with the definitions

\[v_E = \frac{(c/B) E \times b}{}, \]
\[v_{VB} = \frac{J_\perp}{2 \gamma \Omega_0} \frac{b \cdot \nabla B}{}, \]
\[v_x = \frac{r \cdot \dot{u}}{\Omega_0} \frac{b \times \frac{\partial b}{\partial s}}{}, \]
\[\Omega_0 = eB/m_0 c. \]

Otherwise the notation is that of Sect. 2. In particular (2.3) through (2.6) and (2.16) for \(W_K, \gamma, u, r, v \) are in effect. Mozorov and Solov’ev [1] do not give an explicit expression for \(\dot{u} \), but this can be supplemented, viz

\[\dot{u} = \frac{e}{m_0} E - \frac{J_\perp}{2 \gamma} \frac{\partial B}{\partial s} + u \cdot \frac{\partial b}{\partial s}. \]

For time-independent fields conservation of energy follows from (A.3), viz

\[W_K + e \varphi = \text{const} \]

along orbits. It is seen that (A.1) and (A.8) agree exactly with the corresponding relations of Sect. 2, while (A.2) and \(v \) of (A.3) through (A.6) only deviate by terms of \(O(c^2) \), if drift ordering (see Appendix C) is assumed. In particular, \(v_{CD} \) of (2.28) is of order \(c^2 \). Note that the agreement of (A.8) with (2.33) is only formal, since the two quantities \(r \) are not the same in both equations. Physically, the discrepancy is again of \(O(c^2) \). As mentioned in Sect. 1, this theory is not Lorentz invariant and it does not generally satisfy a Liouville’s theorem. The lack of Lorentz invariance is explained in [5].

Appendix B

Littlejohn’s Non-relativistic Guiding Center Theory Summarized

This summary is restricted to the special form Littlejohn’s theory [2] assumes when drift scaling (see App. C) is assumed [3], [4]. Littlejohn [4] uses an extended Lagrangian that contains the gyro-motion, viz

\[\mathcal{L} = \frac{e}{c} A^* \cdot v - e \varphi - \mu B - \frac{m}{2} \dot{r}^2 + \frac{mc}{e} \mu \theta, \]

where \(\theta \) is the gyration angle and \(\mu \) is one of the independent variables rather than a parameter. We prefer to start with an abbreviated Lagrangian, viz

\[L = \frac{e}{c} A^* \cdot v - e \varphi - \mu B - \frac{m}{2} \dot{r}^2, \]

which does not contain the gyro-motion and where \(\mu \) is now a parameter rather than one of the independent variables, which are \(t, x, r \equiv \hat{x}, \) and \(v. \) Here it is \(\mu \) that is the (perpendicular) adiabatic invariant, i.e. \(\dot{\mu} = 0. \) The modified vector potential is now

\[A^* = A(t, x) + \frac{mc}{e} \dot{\hat{x}}(t, x), \]

while the kinetic energy is, of course.

\[W_K = \frac{m}{2} \dot{r}^2 + \mu B. \]

The Lagrangian equations yield

\[\dot{v} = \mathcal{L} \]

and the other equations of motion, viz

\[\dot{r} = \frac{c}{m} E - \frac{\mu}{m} \frac{\partial B}{\partial s} + r \cdot \frac{\partial b}{\partial s}, \]

\[\frac{dW_K}{dt} = e E \cdot v - \mu \frac{\partial B}{\partial t}, \]

with

\[\mu = -\mu \dot{b} + \frac{m}{B} \dot{r} \]

and

\[v = \dot{r} + v_E + v_{VB} + v_x + v_{CD}. \]

with

\[v_E^* = \frac{c}{B^*} E \times \hat{b}, \]
\[v_{VB}^* = \frac{m \Omega^*}{B^*} \hat{b} \times \nabla B, \]
\[v_x^* = \frac{r^2}{\Omega^*} \hat{b} \times \frac{\partial b}{\partial s}, \]
\[v_{CD}^* = \frac{r}{\Omega^*} \hat{b} \times \frac{\partial b}{\partial t}. \]
with
\[B^* = B + \frac{mc}{e} \mathbf{r} \cdot \mathbf{b} \times \mathbf{b}, \]
\[Q^* = \frac{eB^*}{mc}. \]
The energy theorem reads
\[\frac{d}{dt} (W_K + e\varphi) = 0. \]
The Liouville's theorem is satisfied for
\[\frac{d}{dt} (2\pi/m) B^* d^3 \mathbf{r} d\mu, \]
and a rational kinetic theory can therefore be derived [3]. Littlejohn's theory [2], [3], [4] is not Galilei invariant, as is explained in [5].

Appendix C

The expansion parameter \(\varepsilon \ll 1 \) is defined as the ratio between the gyro-radius \(r_g \) and a typical macroscopic length \(L \), i.e. \(\varepsilon \equiv r_g/L \). Here
\[r_g = \frac{w_1}{\Omega} = \frac{\mathbf{y} \cdot \mathbf{w_1}}{\Omega_0} = \frac{\mathbf{y} \cdot r_{th}}{\Omega_0}, \]
where \(r_{th} \) is a typical thermal velocity. For a time \(t \) defined by \(L/r_{th} \), which is of the order of a bounce time in a toroidal magnetic field, it follows that
\[\Omega t = O (\varepsilon^{-1}). \]
Drift ordering assumes that
\[cE/r_{th} B = O (\varepsilon). \]
For \(E \) this implies
\[\frac{eE}{m_0 \gamma r_{th}} = O (1). \]
It follows that
\[\frac{t_{th}^*}{t_{th}} \sim \frac{t_{th}^*}{t_{th}} \sim \frac{r_{th}^*}{r_{th}} = O (\varepsilon), \]
while
\[\frac{r_{cd}^*}{r_{th}} = O (\varepsilon^2). \]
Owing to
\[\frac{\partial \mathbf{b}}{\partial t} = \frac{1}{B} \frac{\partial B}{\partial t} - \frac{\mathbf{b}}{\partial t} \frac{\partial B}{\partial t}, \]
and
\[\frac{1}{\Omega B} \frac{\partial B}{\partial t} = - \frac{c}{\Omega B} \mathbf{curl E} = O (\varepsilon^2). \]
From (2.4) it follows that
\[\frac{J_1 B}{m_0 \gamma r_{th}^2} = \frac{2\mu B}{m_0 \gamma r_{th}^2} = O (1). \]
It is important to note that for several dimensionless quantities no \(\varepsilon \)-scaling is defined, e.g. for \(E/B, r_{th}/c, e\varphi/W_K \), and others. The magnitude of these quantities is inasmuch arbitrary.

It is sometimes useful to employ a dimensional representation of the above drift scaling. One may then put
\[L \sim t_{th} \sim \frac{c}{b} \sim \frac{\mu J_1}{m_0 \gamma} \sim \frac{eJ_1}{\gamma} = O (1), \]
\[\frac{m_0 \gamma}{e} \sim \frac{1}{\Omega} \sim \frac{\gamma}{\Omega_0} \sim r_{th} \sim E = O (\varepsilon), \]
whence
\[t_{th}^* \sim r_{th}^* \sim r_{th}^* = O (\varepsilon) \]
and
\[r_{cd}^* = O (\varepsilon^2). \]
Again, several quantities remain unscaled, e.g. \(c, B, \mu, J_1, \gamma, m_0, e \). While \(B^*/c \) and \(B/c \) are \(O (1) \), their difference is \(O (\varepsilon) \), viz.
\[B^*/c = B/c + O (\varepsilon). \]
Using these relations it can easily be shown that the theory of Sect. 2 and the theory by Morozov and Solov'ev [1], as cited in App. A, agree to leading orders in \(\varepsilon \). When comparing vector equations, as the ones for \(\mathbf{v} \), the parallel and perpendicular components must be compared separately.