Microwave Double Resonance Investigation of Rotational Relaxation of Methyl Iodide-\textit{d}_3

W. Schrepp and H. Dreizler

Abteilung Chemische Physik im Institut für Physikalische Chemie der Universität Kiel

Z. Naturforsch. 36a, 654—661 (1981); received March 27, 1981

For a study of rotational relaxation of methyl iodide, CD\textsubscript{3}I, the method of microwave modulated four-level double resonance has been used. The manifold of the \(J = 1, 2 \) and 3 levels has been investigated and the \(\gamma \)-values have been determined. An experimental procedure to overcome disturbances produced by the dynamic Stark-effect is described. The sign of the \(\gamma \)-values is interpreted in terms of first order dipole and quadrupole type rate constants. The experimental results are in accordance with theoretical results of Rabitz et al. Further a derivation of collisional selection rules for molecules with a nuclear quadrupole moment is given.

I. Introduction

In order to investigate the influence of a nuclear quadrupole moment on rotational relaxation, we choose for our measurements the symmetric top molecule CD\textsubscript{3}I because of the large separation of nuclear hyperfine components in its rotational spectrum.

To our knowledge, there is only little information in the literature concerned with relaxation problems of molecules with nuclei of spin \(I \geq 1 \).

Cohen et al. [1] reported on measurements of cyanogen iodide, ICN. Theoretical considerations dealing with the reorientation of the rotational angular momentum during molecular interactions with respect to the nuclear spin \(I \) were given by Rabitz et al. [2].

II. Experimental

The methyl iodide-\textit{d}_3 was purchased from E. Merck, Darmstadt, in a purity of 99.5\%. The frequencies of the \(K = 0 \)-transitions investigated are given in Table 1.

Double resonance measurements of rotational relaxation use an intense pump radiation \(\nu_p \) that alters the population of the pump transition levels. This deviation from Boltzmann equilibrium is then transferred by molecular interactions to other levels and monitored by the signal radiation \(\nu_s \). Examples of the transitions investigated are given in Figure 1. As can be seen from Table 1, the hyperfine components of the \(J = 0 \leftrightarrow 1 \) transition are well separated so that there arises no difficulty in pumping only single transitions. In general an offset of 30 to 50 MHz is sufficient for a pressure of about 10 mT to neglect an alteration of the population difference by the pump radiation in other transitions.

The double resonance apparatus used is shown in Figure 2. In principle the set up is similar to a

Table 1. Frequencies given in MHz for the transitions investigated (CD\textsubscript{3}I, \(K = 0 \) lines).

<table>
<thead>
<tr>
<th>(J = 0 \leftrightarrow 1)</th>
<th>(F = 5/2 \leftrightarrow 7/2)</th>
<th>12178.81</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F = 5/2 \leftrightarrow 5/2)</td>
<td>11774.25</td>
</tr>
<tr>
<td></td>
<td>(F = 3/2 \leftrightarrow 3/2)</td>
<td>12353.85</td>
</tr>
<tr>
<td>(F = 7/2 \leftrightarrow 9/2)</td>
<td>24203.03</td>
<td></td>
</tr>
<tr>
<td>(F = 7/2 \leftrightarrow 7/2)</td>
<td>23831.04</td>
<td></td>
</tr>
<tr>
<td>(F = 7/2 \leftrightarrow 5/2)</td>
<td>23931.64</td>
<td></td>
</tr>
<tr>
<td>(F = 5/2 \leftrightarrow 5/2)</td>
<td>24135.59</td>
<td></td>
</tr>
<tr>
<td>(F = 5/2 \leftrightarrow 3/2)</td>
<td>24908.68</td>
<td></td>
</tr>
<tr>
<td>(F = 3/2 \leftrightarrow 5/2)</td>
<td>23756.60</td>
<td></td>
</tr>
<tr>
<td>(F = 3/2 \leftrightarrow 3/2)</td>
<td>24028.98</td>
<td></td>
</tr>
<tr>
<td>(F = 3/2 \leftrightarrow 1/2)</td>
<td>24177.09</td>
<td></td>
</tr>
<tr>
<td>(F = 9/2 \leftrightarrow 11/2)</td>
<td>36264.61</td>
<td></td>
</tr>
<tr>
<td>(F = 9/2 \leftrightarrow 9/2)</td>
<td>35910.87</td>
<td></td>
</tr>
<tr>
<td>(F = 9/2 \leftrightarrow 7/2)</td>
<td>35913.01</td>
<td></td>
</tr>
<tr>
<td>(F = 7/2 \leftrightarrow 9/2)</td>
<td>36826.86</td>
<td></td>
</tr>
<tr>
<td>(F = 7/2 \leftrightarrow 7/2)</td>
<td>36285.00</td>
<td></td>
</tr>
<tr>
<td>(F = 7/2 \leftrightarrow 5/2)</td>
<td>36464.90</td>
<td></td>
</tr>
<tr>
<td>(F = 5/2 \leftrightarrow 5/2)</td>
<td>36184.40</td>
<td></td>
</tr>
<tr>
<td>(F = 5/2 \leftrightarrow 3/2)</td>
<td>36364.30</td>
<td></td>
</tr>
<tr>
<td>(F = 3/2 \leftrightarrow 3/2)</td>
<td>36588.55</td>
<td></td>
</tr>
<tr>
<td>(F = 3/2 \leftrightarrow 1/2)</td>
<td>36816.17</td>
<td></td>
</tr>
<tr>
<td>(F = 3/2 \leftrightarrow 1/2)</td>
<td>36489.44</td>
<td></td>
</tr>
</tbody>
</table>

Reprint requests to Prof. Dr. H. Dreizler, Institut für Physikalische Chemie der Universität Kiel, Olshausenstraße 40—60, D-2300 Kiel.

0340-4811 / 81 / 0600-0654 $ 01.00/0. — Please order a reprint rather than making your own copy.
the collision induced transitions, which are rather sensitive to resonance conditions \(r_p = r_p^0 \) and the dynamic Stark effect \([5]\) which compared to the collisional effects is rather insensitive to frequency changes of \(r_p \). In the case of the investigated transitions of CD\(_3\)I especially for \(J = 1 \leftrightarrow 2 \) the dynamic Stark effect superimposes the signal line produced by collision induced transitions. Cohen et al. \([1]\) also noticed these difficulties in their work.

To overcome this disturbance a “frequency modulated” double resonance experiment was performed. As the reduction of the pump power is limited by the saturation condition for the pump transition, the dynamic Stark-effect could not be

Stark-spectrometer (parts 5, 7, 8, 9, 11, 13 of Fig. 2) with 33 kHz-modulation giving \(I \), the intensity of the signal transition. The change \(\Delta I \) in signal intensity due to molecular collisions is determined by the microwave double resonance part of the apparatus. For further details see Reference \([4]\).

The use of amplitude modulated high pump powers in the order of watts leads to two effects:
eliminated by using low pump powers. The saturation condition should be fulfilled to simplify the correlation of \(\eta \equiv \Delta I/I \) to the rate constants \([6]\).

For the "frequency modulated" pump source we used two phase stabilized BWO's (1a) and (1b) of Fig. 2, BWO (1b) with a frequency difference of \(\pm 70 \text{ MHz} \) to (1a).

The two microwave radiations \(v_p^0 \) and \(v_p' = v_p^0 \pm 70 \text{ MHz} \) were on-off modulated with 180° phase shift at a modulation frequency of 7 Hz, combined with a SPDT-switch as indicated in Fig. 3 and amplified by a TWT-amplifier. In the 7 Hz-PSD (14) the dynamic Stark-effect is eliminated as its signals are nearly equal for a frequency difference of 70 MHz. The use of two BWO's allows an independent adjustment of the MW power to account for different transmission at both frequencies \(v_p^0 \) and \(v_p' \). A comparison of a dynamic Stark-effect signal measured by on-off modulated pump, and of the hidden collision induced signal is given in Figure 4.

III. Results and Discussion

The measured \(\eta \)-values for CD3I are given in Table 2. The first order dipolar type collisional selection rules (see appendix) for a molecule with nuclear quadrupole hyperfine structure of rotational transitions are:

\[
\begin{align*}
\Delta J &= 0, \pm 1; \\
\Delta K &= 0; \\
\Delta I &= 0; \\
(0 \leftrightarrow 0)
\end{align*}
\]

\[
\begin{align*}
\Delta F &= 0, \pm 1; \\
\Delta M_F &= 0, \pm 1. \\
(1)
\end{align*}
\]

The results given in Table 2 indicate that higher order collisional effects or/and cascaded transitions play a significant role in the relaxation behaviour of CD3I. Attempts to detect \(\Delta K = 1 \) collision induced signals were not successful. This is in agreement with the collisional selection rules (1).

We always used the \(J = 0 \leftrightarrow 1 \) transitions for pumping. As can be seen from Table 2, the \(\eta \)-values for the collision induced signal transitions \(J = 1 \leftrightarrow 2 \) are negative, whereas for \(J = 2 \leftrightarrow 3 \) they are positive or negative. A complete analysis in terms of first order rate constants as we have given for a four-level system of ethylene oxide \([4]\) can not be given here, because the experimental information is too limited. Table 2 contains 31 \(\eta \)-values. 37 first order rate and 15 bath constants besides a higher number of second order rate constants are unknowns.

However the experimentally determined signs of the \(\eta \)-values can be rationalized by using the steady state equations connecting \(\eta \) to the rate constants \([6]\). For simplification we consider four-level subsystems consisting of the two pump and the two signal levels. A general example and the corresponding first order rate constants \(k_{ij} \) describing the collisional transfer from level \(i \) to level \(j \), is given in Figure 5a. All collisional processes connecting the four-level system to other levels are summarized by the bath constants \(k_1, k_2, k_3, k_4 \). There are also collision induced signals, which cannot be explained by direct first order dipolar collision channels. So we need first order quadrupole or second order
Table 2. η-values in % for CD₃I (Temperature: 233 K; pressure 10 mT). DR indicates three-level double resonance. In these cases no η-value can be determined. θ gives the reorientation angle (see text). Collisional signal can not be explained by simple first order dipolar collisional channels. Experimental uncertainties: J = 1<->2, η = ± 0.1%; J = 2<->3, η = ± 0.1%. * indicates deviations from theoretical prediction (see text) — not measured.

<table>
<thead>
<tr>
<th>Signal transition</th>
<th>Pump transition</th>
<th>J = 0<->1; F = 5/2<->3/2</th>
<th>J = 0<->1; F = 5/2<->5/2</th>
<th>J = 0<->1; F = 5/2<->7/2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η</td>
<td>Δθ</td>
<td>η</td>
<td>Δθ</td>
</tr>
<tr>
<td>F = 3/2<->1/2</td>
<td>DR</td>
<td>−1.3</td>
<td>47</td>
<td>−1.9</td>
</tr>
<tr>
<td>F = 3/2<->3/2</td>
<td>DR</td>
<td>−2.9</td>
<td>2*</td>
<td>−2.9</td>
</tr>
<tr>
<td>F = 3/2<->5/2</td>
<td>DR</td>
<td>−3.0</td>
<td>18</td>
<td>−3.1</td>
</tr>
<tr>
<td>F = 5/2<->3/2</td>
<td>−4.0</td>
<td>36</td>
<td>DR</td>
<td>−1.7</td>
</tr>
<tr>
<td>F = 5/2<->5/2</td>
<td>−1.5</td>
<td>52</td>
<td>DR</td>
<td>−4.1</td>
</tr>
<tr>
<td>F = 5/2<->7/2</td>
<td>−1.3</td>
<td>70</td>
<td>DR</td>
<td>−4.3</td>
</tr>
<tr>
<td>F = 7/2<->5/2</td>
<td>−2.6</td>
<td>52</td>
<td>−4.4</td>
<td>18</td>
</tr>
<tr>
<td>F = 7/2<->7/2</td>
<td>−1.0</td>
<td>70</td>
<td>−4.3</td>
<td>32</td>
</tr>
<tr>
<td>F = 7/2<->9/2</td>
<td>−1.4</td>
<td>92*</td>
<td>−1.7</td>
<td>54</td>
</tr>
<tr>
<td>F = 1/2<->1/2</td>
<td>+2.1</td>
<td>−0.3*</td>
<td>−0.5</td>
<td></td>
</tr>
<tr>
<td>F = 1/2<->3/2</td>
<td>+2.0</td>
<td>−0.3*</td>
<td>−0.4</td>
<td></td>
</tr>
<tr>
<td>F = 3/2<->1/2</td>
<td>+0.7</td>
<td>0</td>
<td>+0.3*</td>
<td>−0.4*</td>
</tr>
<tr>
<td>F = 3/2<->3/2</td>
<td>+0.7</td>
<td>+0.2</td>
<td>+0.4</td>
<td></td>
</tr>
<tr>
<td>F = 3/2<->5/2</td>
<td>+1.0</td>
<td>+0.1</td>
<td>+0.4</td>
<td></td>
</tr>
<tr>
<td>F = 5/2<->3/2</td>
<td>−</td>
<td>−</td>
<td>−0.3</td>
<td></td>
</tr>
<tr>
<td>F = 5/2<->5/2</td>
<td>+0.2</td>
<td>+0.6</td>
<td>−0.3</td>
<td></td>
</tr>
<tr>
<td>F = 5/2<->7/2</td>
<td>+0.4</td>
<td>+0.6</td>
<td>−0.3</td>
<td></td>
</tr>
<tr>
<td>F = 7/2<->5/2</td>
<td>−</td>
<td>−</td>
<td>−0.3</td>
<td></td>
</tr>
<tr>
<td>F = 7/2<->7/2</td>
<td>−0.1*</td>
<td>+0.6</td>
<td>+0.1</td>
<td></td>
</tr>
<tr>
<td>F = 7/2<->9/2</td>
<td>−0.2*</td>
<td>+0.5</td>
<td>+0.1</td>
<td></td>
</tr>
<tr>
<td>F = 9/2<->7/2</td>
<td>−</td>
<td>−</td>
<td>−0.3</td>
<td></td>
</tr>
<tr>
<td>F = 9/2<->9/2</td>
<td>−0.1*</td>
<td>−0.7*</td>
<td>+0.5</td>
<td></td>
</tr>
<tr>
<td>F = 9/2<->11/2</td>
<td>−0.3*</td>
<td>−0.3*</td>
<td>+1.6</td>
<td></td>
</tr>
</tbody>
</table>

dipole channels too, as symbolized in Fig. 5b by k₁₄ and k₂₃. The relation between η and the rate constants can be obtained by using the network analogue of the collisional system [8] resulting in the following expressions for the case of first order dipolar type collisional channels**.

\[
\eta = - \frac{v_p^0}{2 v_s^0} \exp \left(\frac{(E_3 - E_1)}{k T} \right) \frac{k_{13} k_4 + k_{24} k_3 + 2 k_{13} k_{24}}{k_3 (k_{24} + k_{34}) + k_4 (k_{13} + k_{34}) + k_3 k_4 + k_{24} k_{34} + k_{13} k_{34} + k_{13} k_{24}};
\] (2)

\[
v_p^0: \text{frequency of the pump transition}, \quad T: \text{temperature}, \quad v_s^0: \text{frequency of the signal transition}, \quad E_i: \text{energy of level } i, \quad k_{ij}: \text{"bath constant," connecting level } i \text{ to level } j \text{ (see Fig. 5a)}, \quad k: \text{Boltzmann constant},
\]

When the rate constants k₁₄ and k₂₃ are also taken into account, we obtain:

\[
\eta = - \frac{v_p^0}{2 v_s^0} \exp \left(\frac{(E_3 - E_1)}{k T} \right) \frac{(k_{24} - k_{14}) (k_{13} + k_{23} + k_3) + (k_{13} - k_{23}) (k_{24} + k_{14} + k_4)}{k_3 (k_{24} + k_{34}) + k_4 (k_{13} + k_{34}) + k_3 k_4 + k_{24} k_{34} + k_{13} k_{34} + k_{13} k_{24}} \]

If collision induced transitions connecting the levels 1<->4 and 2<->3 are unimportant, (3) reduces to (2). The derivation of (2) and (3) implicitly assumes saturation of the pump transition, negligible influence

** The bath constants are not necessarily restricted to be of dipolar type.
The double resonance experiments for the $J = 2 \leftrightarrow 3$ signal transitions may be classified roughly into two groups.

In the first one, there is a first order dipolar collisional channel between levels 2 and 3 of Figure 5b*. For example we may consider the pump transition $J = 0 \leftrightarrow 1; F = 5/2 \leftrightarrow 3/2$ and the signal transition $J = 2 \leftrightarrow 3; F = 3/2 \leftrightarrow 5/2$ of CD$_3$I (see Fig. 6a; channels connecting the system to the thermal bath are omitted). Possible higher order and cascaded channels are indicated in Figure 6b. If the collision channel 2 \leftrightarrow 3 dominates the interaction behaviour, then according to (3) the η-value should be positive, as it is actually found. This implies for the given choice of levels that competitive processes like quadrupolar collision induced transitions $1 \leftrightarrow 3$ or cascading transitions are relatively unimportant for the four-level system under consideration. All remaining η-values which have positive sign may be interpreted in the same way for the pump transitions $J = 0 \leftrightarrow 1; F = 5/2 \leftrightarrow 3/2$ and $J = 0 \leftrightarrow 1; F = 5/2 \leftrightarrow 5/2$.

In the second case, given for example by the subsystems with $J = 0 \leftrightarrow 1; F = 5/2 \leftrightarrow 3/2$ for pump transition and $J = 2 \leftrightarrow 3; F = 7/2 \leftrightarrow 7/2$ for signal transition, no first order dipolar collision channels exist between pump and signal levels, as shown in Figure 6c. So the collision processes should be determined by quadrupolar or second order dipole collisional transitions $1 \leftrightarrow 3$, $2 \leftrightarrow 3$, $2 \leftrightarrow 4$ or cascading effects, resulting if k_{23} is small, in negative η-values, as they are found experimentally.

The four-level double resonance results for the pump transition $J = 0 \leftrightarrow 1; F = 5/2 \leftrightarrow 7/2$ should be discussed separately. As can be seen from Table 2 the sign of η is just opposite to the $J = 0 \leftrightarrow 1; F =$

![Fig. 6. Examples of four-level systems for CD$_3$I. \leftrightarrow = pump transition; \leftrightarrow = signal transition; \leftrightarrow = first order dipole channel; \leftrightarrow = first order quadrupole or second order dipole channel. In a) and c) only those collision channels are indicated, which seemed to be responsible for the sign of η. For further discussion see text.

* 2 and 3 is used here for designation of the levels of the general four-level system.

* 2 and 3 is used here for designation of the levels of the general four-level system.
5/2 ↔ 3/2 selection of the pump transition. So the relative weight of the competitive collisional processes should be reversed. For explanation let us consider one case of Table 2. The \(\eta \)-value for the pump transition \(J = 0 \leftrightarrow 1; F = 5/2 \leftrightarrow 3/2 \) is positive for the signal \(J = 2 \leftrightarrow 3; F = 1/2 \leftrightarrow 1/2 \), indicating that the dipolar type collisional transition \(2 \leftrightarrow 3 \) is dominant, whereas in the case of pumping \(J = 0 \leftrightarrow 1; F = 5/2 \leftrightarrow 7/2 \) the quadrupolar or second order dipole collisional channel \(1 \leftrightarrow 4 \) should be responsible for the negative \(\eta \). Other collisional channels except the bath constants should be of minor importance. The sign of the other \(\eta \)-values may be interpreted in a similar way.

Up to this point, we have only discussed the sign of the \(\eta \)-values. Following theoretical considerations of Rabitz et al. [2], it is also possible to understand the relative magnitude of the \(\eta \)-values. According to Ref. [2], page 1842, the collisional transition probability may be expressed by a product of two terms. One \((P(J_i \leftrightarrow J_i')) \) depends only on the rotational quantum number \(J \), the other \((P(\Delta F)) \) is determined by the reorientation of the total angular momentum \(F \). So, by keeping the rotational quantum numbers \(J_i \) and \(J_i' \) for the collisional transitions fixed, it becomes possible to compare the collision induced signals for the \(F \) components only from that part depending on the total angular momentum \((P(\Delta F)) \). The results of the calculations may be summarized in the following way:

The nuclear angular momentum \(I \) is assumed to be constant, resulting in the collisional selection rule \(\Delta I = 0 \). So the vector \(I \) is regarded to constitute an internal pointer during the collision process. The changes in angular momentum can be referred to this pointer. According to Rabitz et al. [2] those collision channels should be preferred, for which the smallest change in magnitude of the angle \(\theta \) between \(J \) and \(F \) occurs (see Figure 7). The length of the vectors is taken as \(|I| = (l(l + l))^{1/2} \). The \(\Delta \theta \) values with \(\Delta \theta = |\theta_0 - \theta| \) where \(\theta \) gives the angle for the situation following the interaction are given in Table 2. For collisional transitions from the lower pump level \(J = 0 \) these considerations cannot be applied, as we then have \(J = 0 \), allowing no definition of the angle \(\theta \). Therefore it is only possible to compare \(\eta \)-values for which the collisional transition \(1 \leftrightarrow 3 \) is the same, that is only those signal transitions for fixed pump transition, which originate from the same level 3. We consider the signal transitions \(J = 1 \leftrightarrow 2 \). For the example of Fig. 7 with collision induced transitions originating from the \(J = 1; F = 7/2 \) level, we get for a \(\theta_0 \) value of 42° the following changes \(\Delta \theta \) for the \(F \) sublevels of \(J = 2 \):

- \(F = 7/2: 8{\degree} \)
- \(F = 9/2: 14{\degree} \)
- \(F = 5/2: 26{\degree} \)
- \(F = 3/2: 42{\degree} \)

From the \(\Delta \theta \) values we should expect for the pump transition \(J = 0 \leftrightarrow 1; F = 5/2 \leftrightarrow 7/2 \) the following behaviour of the \(\eta \)-values, which here are indicated by the \(J \) and \(F \) values of the signal transition. In brackets we give \(\eta \) from Table 2 (\(\eta_{\text{signal}}: J, F \leftrightarrow J', F' \)):

- \[|\eta|_{1,3/2 \leftrightarrow 2,5/2} > |\eta|_{1,3/2 \leftrightarrow 2,3/2} > |\eta|_{1,3/2 \leftrightarrow 2,1/2} : (3.1\% > 2.9\% > 1.9\%) \]
- \[|\eta|_{1,5/2 \leftrightarrow 2,7/2} > |\eta|_{1,5/2 \leftrightarrow 2,5/2} > |\eta|_{1,5/2 \leftrightarrow 2,3/2} : (4.3\% > 4.1\% > 1.7\%) \]

The collisional channels \(1 \leftrightarrow 3 \), here \(J = 0; F = 5/2 \leftrightarrow J = 1; F = 3/2 \) and \(J = 0; F = 5/2 \leftrightarrow J = 1; F = 5/2 \) respectively are equal for each series. In the same way the relation between the other \(\eta \)-values can be explained. For two examples indicated by * in Table 2, there is a discrepancy. But with respect to the experimental uncertainties, a clear decision is not possible for these cases. Perhaps quadrupolar collisional transitions from pump levels with \(J = 0 \) play a more important role in these two systems.

Signal transitions with \(J = 2 \leftrightarrow 3 \) we would not like to discuss, because a variety of higher order effects surely will complicate the analysis within this simple model.

As the foregoing discussion shows, the sign of the \(\eta \)-values and in some cases the relative magnitude can be interpreted in terms of rate constants and relative collisional transition strengths for the CD₃I molecule. Especially, the sign of \(\eta \) on the basis of the Eqs. (2) and (3) allows an estimation of the relative influence of different collision channels.

![Fig. 7. Geometrical illustration of angular momenta involved in the collisional process. The left part of a) symbolizes the molecular state before interaction, the right part the possible states after collision. Further comments are given in the text. b) shows one of the collisional channels symbolized by diagram a).](image-url)
In general from time dependent measurements, giving the relaxation times for the population \(T_1 \) and for the polarisation \(T_2 \), such conclusions are not possible a priori since these parameters are connected only to sums of rate constants (see Ref. [4] and references cited there).

Appendix

Collisional selection rules for molecules with a nucleus having spin \(I \geq 1 \)

For completion we will give a derivation of collisional selection rules for the molecular system under investigation. In terms of first order perturbation theory and under the assumption of the impact approximation we get for the transition probability \([6, 9]\):

\[
P_{R_1^t R_2^t} \rightarrow R_1^t R_2^t = \left| \int_{-\infty}^{\infty} \left< R_1^t R_2^t | V(t) | R_1^t R_2^t \right> e^{i\Delta E_R t/\hbar} dt \right|^2
\]

where \(R \) designates the rotational states of the colliding molecules 1 and 2 undergoing a transition from the states with total energy \(E_{R_1^t} + E_{R_2^t} \) to \(E_{R_1^t} - E_{R_2^t} \) and

\[
\Delta E_R = E_{R_1^t} + E_{R_2^t} - E_{R_1^t} - E_{R_2^t} \leq kT. \quad (A.2)
\]

Introducing the expansion of the interaction potential \(V(t) \) and following the derivation of \([9]\), one gets for the essential part of the matrix element \([6, 9]\):

\[
\langle J_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} I_{11} F_{11} M_{F_{11}} \rangle
\]

\[
J_{11} K_{11} I_{11} F_{11} M_{F_{11}}
\]

\[
\cdot M_{F_{11} m_{12}} \langle J_{21} I_{21} F_{21} M_{F_{21}} | D_{m_2^*, m_2}^{J_{21}} | J_{21} K_{21} I_{21} F_{21} M_{F_{21}} \rangle
\]

\[
(A.3)
\]

In (A.3) \(\langle R_1^t R_2^t | \) has been specified by

\[
\langle J_{11} I_{11} F_{11} M_{F_{11}} | \langle J_{21} I_{21} F_{21} M_{F_{21}} \rangle,
\]

where \(J \) is the quantum number of angular momentum, \(M \) for its projection to space fixed and \(K \) for its projection to molecule fixed \(Z \) resp. \(z \) axes. \(I \) indicates the nuclear spin momentum, \(F \) and \(M_F \) the total angular momentum and its projection to the space fixed axis \(Z \). For the derivation of the selection rules it is sufficient to consider one factor of (A.3), rewritten in the form:

\[
M_{l m} \langle J_{11} K_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} I_{11} F_{11} M_{F_{11}} \rangle = (-1)^{F_{11} - M_{F_{11}}} \left(\begin{array}{c} F_1 \ l \ F_t \\
-M_{F_1} \ m \ M_{F_{11}} \end{array} \right) \cdot \langle J_{11} K_{11} I_{11} F_{11} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} I_{11} F_{11} \rangle; \quad (A.5)
\]

\[
\left(\begin{array}{c} F_1 \ l \ F_t \\
-M_{F_1} \ m \ M_{F_{11}} \end{array} \right)
\]

is a \(3j \)-symbol and \(\langle \| \rangle \)

a reduced matrix element. Following (7.1.7) of \([10]\) the reduced matrix element in the coupled basis can be written:

\[
\langle J_{11} K_{11} I_{11} F_{11} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} I_{11} F_{11} \rangle = (-1)^{F_{11} + F_{11} + M_{F_{11}}} \left(\begin{array}{c} F_1 \ l \ F_t \\
-M_{F_1} \ m \ M_{F_{11}} \end{array} \right)
\]

\[
\cdot \langle J_{11} K_{11} I_{11} F_{11} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} I_{11} F_{11} \rangle. \quad (A.6)
\]

Here \(\{ \} \) indicates a \(6j \)-symbol. Using the fact, that the eigenfunctions for symmetric top molecules may be written in terms of elements of the rotation matrix \([9]\):

\[
| J K M \rangle = \left(\frac{2J + 1}{8\pi} \right)^{1/2} D_{K M}^{J I} \quad (A.7)
\]

we get, using formula (4.2.7) and (4.6.2) of Ref. \([10]\):

\[
\langle J_{11} K_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} I_{11} M_{F_{11}} \rangle = (-1)^{K_{11} - M_{11}} \{2J_1 + 1\}(2J_1 + 1)^{1/2}
\]

\[
\cdot \langle J_{11} K_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} I_{11} M_{F_{11}} \rangle
\]

\[
(A.8)
\]

From (A.8) and

\[
\langle J_{11} K_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} M_{F_{11}} \rangle = (-1)^{M_1 - J_1} \quad (A.9)
\]

\[
\cdot \langle J_{11} K_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} M_{F_{11}} \rangle
\]

\[
(A.10)
\]

which results from the Wigner-Eckart-Theorem, we obtain:

\[
\langle J_{11} K_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} M_{F_{11}} \rangle = (-1)^{K_{11} - J_1}
\]

\[
\cdot \langle J_{11} K_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} M_{F_{11}} \rangle
\]

\[
(A.10)
\]

\[
\cdot \langle J_{11} K_{11} I_{11} F_{11} M_{F_{11}} | D_{m_1^*, m_1}^{J_{11}} | J_{11} K_{11} M_{F_{11}} \rangle
\]

\[
(A.10)
\]
Combining (A.10), (A.6) and A.5 results in the following expression for the relevant matrix element:

\[M_{lm} = \langle J_1 K_1 I F_1 M_{F_1} | D_{m_m}^j | J_1 K_1 I F_1 M_{F_1} \rangle \]

\[= M_{lm'} (-1)^{F_1 + F_t - M_{F_1} + I + K_t + l} \]

\[\cdot [(2F_1 + 1)(2F_t + 1)(2J_1 + 1)(2J_t + 1)]^{1/2} \]

\[\cdot \left[\begin{array}{ccc} J_1 & F_1 & I \\ F_t & J_t & l \end{array} \right] \left(\begin{array}{ccc} F_1 & l & F_t \\ -M_{F_1} & m & M_{F_1} \end{array} \right) \]

\[\cdot \left(\begin{array}{ccc} 1 \end{array} \right) \]

\[\left(-K_1 \ m' \ K_t \right) . \]

(A.11)

For nonvanishing multipole moments \(M_{lm} \) the collisional selections rules follow from the properties of the two \(3j \)-symbols in (A.11) to:

\[\Delta M_F = M_{F_t} - M_{F_1} = m, \quad |m| \leq l \]

(A.12)

\[\Delta K = K_t - K_1 = m', \quad |m'| \leq l \]

\[\Delta J = |J_t - J_1| \leq l, \quad \text{and} \quad J_t + J_1 \geq l, \]

\[\Delta F = |F_t - F_1| \leq l, \quad \text{and} \quad F_t + F_1 \geq l. \]

Only those \(m' \) values have to be considered, for which the \(M_{lm} \) are belonging to the totally symmetric species of the molecular point group [6]. Dipolar collisional selection rules result from \(l=1 \), quadrupolar selection rules from \(l=2 \).

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemie for funds, one of us (W. Sch.) for a doctoral fellowship of the Studienstiftung des deutschen Volkes. We kindly acknowledge many discussions with the members of our group, especially Dr. Mäder also for critically reading the manuscript.