Production of Polycrystalline n-TiO$_2$-Layers for Photoelectrochemical Purpose

K. J. Hartig, J. Lichtscheidl, and N. Getoff
Institut für Theoretische Chemie und Strahlenchemie der Universität Wien und Ludwig Boltzmann Institut für Strahlenchemie, Wien, Österreich

Z. Naturforsch. 36a, 51—56 (1981); received September 18, 1980

The preparation of highly photoactive, polycrystalline n-TiO$_2$-semiconductors by thermochemical oxidation of Titanium metal sheets was investigated systematically. The optimum temperature in an oxygen atmosphere was found to be between 550 °C and 650 °C for a period of 10—30 min. Careful etching of the Titanium surface prior to oxidation is a decisive step in the production process. The growth, adhesion on the substrate and photoefficiency of the TiO$_2$-crystals were studied under various experimental conditions. TiO$_2$-layers prepared under optimum conditions showed a photocurrent higher than 2 mA cm$^{-2}$ in 0.1 mol dm$^{-3}$ KCl as electrolyte and about 6 mA cm$^{-2}$ in 1 mol dm$^{-3}$ KOH, respectively. The overall energy conversion was $\eta \approx 3.5\%$.

1. Introduction

Since the discovery by Fujishima and Honda [1] that single crystals of n-TiO$_2$ (rutile) used as photoanode are able to split water under the influence of light, intensive search for other suitable semiconductors has been made [2, 3]. However, TiO$_2$ has still some special qualities to offer, i.e. its remarkable stability in aqueous electrolyte solutions and its possible use in dye sensitized photoelectrolytic cells [4—6] and for photooxidation processes [7—9]. Most of these investigations were performed with TiO$_2$ single crystals. Single crystals are, however, much too expensive to be applicable for practical purposes on a large scale. Photoactive polycrystalline films of TiO$_2$ offer the advantage to be cheaper in preparation and reliable as well. Various methods for the production of such films have been suggested, e.g. by electrochemical oxidation of Titanium metal sheets [10, 11], molecular plating [12], plasma jet spraying [13, 14], chemical vapour deposition [5, 15] and thermal oxidation of Ti-foils [12, 16, 17]. Layers of pressed and sintered TiO$_2$ powder have also been used for this purpose [17]. Although all these methods yield TiO$_2$-films with reasonable photoactivity, their mechanical adhesion on the Ti-sheet and long time stability against corrosion are still not always satisfying [11, 12]. The main interest of the work mentioned above lay in the semiconductor properties of n-TiO$_2$-films, while the technological and metallurgical criteria of this matter were less emphasized.

It is well known that various factors are authoritative in the production of TiO$_2$-layers of Ti-foils [18—21]: e.g. pretreatment and etching of the metal foil, temperature and duration of heating and the partial pressure of oxygen during the oxidation process. In the present paper the role of these factors in the production of photosensitive TiO$_2$-layers is examined. Furthermore, the work includes testing of representative n-TiO$_2$-samples with regard to their mechanical stability, photoactivity and corrosion effects during long time operation in cells. Some preliminary results of this topic have already been published [22].

2. Experimental

2.1. Production of n-TiO$_2$ Electrodes

The Ti-sheets (Goodfellow Metals, Cambridge, G.B.) consist of 99.7% Ti with 0.3% unspecified metallic traces. Metal foils of 0.25 mm thickness and 3 × 2 cm2 size were cleaned in an ultrasonic bath with destilled water, methanol, trichloroethylene and again methanol. The samples were air dried between each washing step. If not stated otherwise, the foils were then etched with Kroll’s acid (20% HF, 30% HNO$_3$, 50% H$_2$O) and rinsed with destilled water. This cleaning procedure turned out to be the most efficient one for the production of photoactive semiconductors. The cleaned sheets were then introduced into a quartz tube immediately, evacuated and heated in a...
The gas atmosphere was created by a steady flow of air or oxygen through the tube at normal pressure. In a series of experiments the air was evacuated up to 5×10^{-2} Torr prior to heating. The heating temperature was varied between 400 and 1100 °C, the heating time between 1 and 180 min. 4 series of samples were investigated, as presented in Table 1.

The inscriptions in the following Figures conform with the numbers of the series in Table 1. Some of the produced thicker oxide films were reduced subsequently in hydrogen atmosphere at 650 °C or 750 °C up to 4 hours in order to reduce their ohmic resistance.

2.2. Testing Procedures

The produced TiO$_2$-electrodes were illuminated as anode in an irradiation vessel by means of a 300 Watt Xe-lamp (Varian Eimac R-300-2) in an electrolyte of 0.1 mol·dm$^{-3}$ KCl or 1 mol·dm$^{-3}$ KOH (p.A.Merck AG). The front window of the vessel was made of Pyrex glass in order to cut off light with wavelengths below 300 nm. A plastic mask was constructed to allow an illumination of an area of 1 cm2. A Pt-sheet (6 cm2) served as cathode and a saturated Kalomel electrode (Radio-meter K 701) as reference. The voltammetric curves were registered by means of a wave generator, which superposes a triangle potential to a potentiostat (sweep 10 mV/sec) in combination with an X-Y recorder.

The light intensity (I_0) at 300 nm was determined by chemical actinometry [23]. The quantum efficiency (Q_e) of each individual TiO$_2$-electrode was measured as a function of the number of electrons ($N(e)$) flowing in the external circuit and the number of incident photons (I_0) [17]:

$$Q_e = \frac{N(e)}{I_0}.$$

Table 1. Experimental conditions for the production of n-TiO$_2$ layers by thermal oxidation of Titanium metal foils.

<table>
<thead>
<tr>
<th>Series</th>
<th>Etching</th>
<th>Atmosphere</th>
<th>Temper. (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yes</td>
<td>oxygen</td>
<td>400–800</td>
<td>10–180</td>
</tr>
<tr>
<td>2</td>
<td>yes</td>
<td>air</td>
<td>600–1000</td>
<td>1–120</td>
</tr>
<tr>
<td>3</td>
<td>no</td>
<td>air</td>
<td>600–1100</td>
<td>10–120</td>
</tr>
<tr>
<td>4</td>
<td>yes</td>
<td>air</td>
<td>600–1100</td>
<td>10–120</td>
</tr>
</tbody>
</table>

The integrated flux (Φ) of the Xe-lamp was determined regularly under the same geometrical arrangement as the TiO$_2$-anode by means of a thermopile (Kipp & Zonen). Its mean value was found to be $\Phi = 11.6 \pm 1.5$ J·cm$^{-2}$·s$^{-1}$. The energy conversion efficiency (η) [24] is defined as the ratio of electrical energy (U_i) and incident light energy (Φ) per unit area. The ohmic resistance (R) of the titaniumoxide film was measured in 0.1 m KCl by the method described below for thickness measurements. The current density (i) was taken from the voltammetric curves at zero bias:

$$\eta = \frac{U_i}{\Phi} = \frac{R i^2}{\Phi}.$$

The thickness of the oxide films in μm was measured by a self designed phase-sensitive impedance bridge and standardized by use of a step height method (Dektak, Sloane Instruments)*.

3. Results and Discussion

3.1. Effect of Pretreatment, Heating and Temperature on the Thickness of the TiO$_2$-films

In order to examine whether a relationship between the thickness of the TiO$_2$-layer and the photoactivity exists, it was first necessary to study the TiO$_2$-crystal growth on Ti-foils under various conditions. In Fig. 1 the Arrhenius plots of the TiO$_2$-crystal growth for typical samples produced in air or oxygen (heating time 10 or 60 min), as given in Table 1, are shown. The nonlinearity of some curves indicates a complicated oxidation mechanism. From the slope of the curves a mean value for the activation energy of about 50 kcal (2.1 x 105 J) was calculated, which is in good agreement with previously reported data [19, 20]. This can be ascribed to the temperature dependence of the diffusion coefficient of O$_2$ in TiO$_2$ [20]. It might be mentioned that the oxide growth on Ti-metal foils has previously been investigated [18, 21], but only with respect to the mechanism of thermal oxidation. The growth of the TiO$_2$-layer is strongly dependent on the partial pressure of oxygen and heating time, as can be seen from Figure 2. In oxygen atmosphere the obtained thickness is about one order of magnitude higher than in air under else identical conditions. The growth of the oxide layer of pretreated samples follows a parabolic law in the investigated temperature region, as expected (curve 1, insert in Figure 2).

* We thank Dr. K. Riedling for valuable help.
Fig. 1. Arrhenius plots of the growth of the TiO_2-layers under various conditions.
Curves A ... 10 min heating time; curves B ... 60 min heating time.
For the meaning of the numbers at the curves here and in the following figures see Table 1.

Unetched probes, however, seem to follow a linear kinetic law, surprisingly (curve 3, insert in Figure 2). This behaviour was not investigated further, since these samples have proved to be not stable mechanically.

Samples oxidated in air at 5 \times 10^{-2} \text{Torr} have oxide layers of less than 0.05 \text{mum} and are therefore not presented in the Figures. From the data shown in Figs. 1 and 2 is obvious that the thickness of the TiO_2-films depends very much on the parameters of the oxidation procedure.

3.2. Production Parameters Affecting the Photocurrent

The photocurrent, measured potentiostatically at zero bias, shows a remarkable dependence on heating temperature and time, as well as on the gas atmosphere, as Fig. 3 and Fig. 4 demonstrate. The highest photocurrent was achieved with samples produced from etched metal surfaces by heating in pure oxygen at 550—650 °C for about 30 min. Since the rate determining step of the oxidation process is the phase boundary reaction at the metal/oxide-interface, a variation of oxygen

Fig. 2. Correlation between the TiO_2-layer thickness (d in \text{\mu m}) and the period (min) of thermal oxidation at 600 °C. Insert: Relationship between heating time and the square of the thickness for curve 1 and the thickness for curve 3, respectively.

Fig. 3. Photocurrent as a function of heating temperature at 10 min heating time.
concentration and pressure does have a remarkable
effect on the growth and the properties of the TiO$_2$-
layer (compare curves 1 and 4 in Figs. 3 and 4). The
oxide-films obtained at reduced air pressure ($5 \times$
10^{-2} Torr) were indeed very thin ($d < 0.05$ pm) and
showed the lowest photocurrent (curve 4 in Figs. 3
and 4). They appear to get a very beautifully
crystallized structure with increasing temperature
which, however, consists of recrystallized Ti metal
[25].

Photocurrents of thermochemically produced n-
TiO$_2$ anodes vs. thicknesses are presented in Figure
5. Again, the oxide films obtained by etching of the
metal surface and subsequent heating in oxygen at
$600 \, ^\circ C$ (curve 1C, Fig. 5) showed a photocurrent of
more then 2 mA in a broad thickness range ($d =$
$0.2 - 5 \mu m$). The unetched samples resulted in
oxide layers, of which the thickness and the oxida-
tion parameter exerted an enormous influence on
their photoactivity (compare e.g. curve 2C with
3C, Figure 5).

The TiO$_2$-films produced at temperatures above
$800 \, ^\circ C$ and long heating time are relatively thick
and possess higher ohmic resistance. It was estab-
lished that the observed decrease of the photo-
current of such samples corresponds to the increased
resistance. An improvement up to some extent
could be achieved by reduction of the oxide layer
in H$_2$-atmosphere at about $600 - 800 \, ^\circ C$ for 4 hours.

An important factor for practical application of
TiO$_2$-films as photoanode is the adhesion of the
oxide layer to the Titanium sheet. For unetched
probes this adhesion is rather bad, since oxide
layers thicker than $0.5 \mu m$ flake off easily. After
removing this “first” oxide layer of about $1 \mu m$ a
“second”, very thin and strongly adhesive layer
($d \approx 0.05 \mu m$) is left below. The photocurrent is
usually increased by this procedure from about
$0.1 \, mA$ to $> 1 \, mA/cm^2$.

The etched Ti-sheets oxidized in oxygen atmos-
phere carried oxide layers stable up to $d = 2 \mu m$,
which couldn’t be removed by simple scratching of
the surface and showed the highest photocoeffi-
ciency obtained in this work. From the results in
Figs. 6 and 7 it is obvious that a comparatively
wide range of heating temperatures (about $550 -$
$650 \, ^\circ C$, Fig. 6) as well as of oxidation times exists
(10 - 30 min, Fig. 7), where TiO$_2$-anodes with ap-
preciable photocurrent can be produced.
Fig. 6. Photocurrent (mA) of TiO₂-anodes produced by thermochemical oxidation in pure oxygen (series 1) of Titanium sheets at various temperatures for different heating times: A = 10 min, B = 30 min and C = 120 min. Electrolyte: 0.1 mol • dm⁻³ KCl.

Fig. 7. Photocurrent (mA) of TiO₂-anodes (series 1) as a function of heating time (min) of their production at various temperatures: A = 400 °C, B = 500 °C, C = 600 °C and D = 700 °C. Electrolyte: 0.1 mol • dm⁻³ KCl.

Fig. 8. Current vs. potential for a sample of series 1 (600 °C, 30 min, O₂), curve I for 0.1 mol • dm⁻³ KCl, curve II for 1 mol • dm⁻³ KOH.

Insert: Current vs. wavelength of incident light for the same sample (d = 2 μm) in 0.1 mol • dm⁻³ KCl (corrected for lamp intensity-monochromator spectral variations).
In addition to the above presented data also voltametric measurements were performed practically from each sample. A typical voltametric curve for a TiO$_2$-film, produced by careful oxidation of Ti-sheet at 600 °C (30 min, O$_2$ atmosphere) is presented in Figure 8. The photocurrent of the same samples measured in 1 mol·dm$^{-3}$ KOH is about 6 mA/cm2 as compared with 2 mA in 0.1 mol·dm$^{-3}$ KCl as electrolyte. In the insert of Fig. 8 the photocurrent (I in μA) of same samples is given as a function of the wavelength of the incident light. The highest I-value was obtained at the range of 330—340 nm.

Finally it is to be mentioned that the mean value of the quantum efficiency (η) for the samples of series 1 was about 0.55 (not corrected for reflection of incident light). The overall energy conversion efficiency was calculated to be $\eta \approx 3.5\%$, similar to previously reported values [26, 27].

3.3. Long Time Stability

The long time stability test of various TiO$_2$-samples, produced in oxygen at 500—700 °C (heating times 10, 30 and 60 min) was performed with and without additional bias. No aging or altering of the photocharacteristics and no corrosion could be observed for an operation under steady state conditions for 120—150 hours, in contrast to electrochemically produced samples [11, 12].

4. Conclusion

a) The production of photoactive, polycrystalline n-TiO$_2$-semiconductors by simple thermochemical oxidation of Titanium metal sheets is possible.

b) For the formation and growth of highly photosensitive TiO$_2$-crystal by thermochemical oxidation of Titanium metal sheets an optimum temperature of about 550 °C—650 °C in pure oxygen atmosphere for about 10—30 min is required.

c) The treatment of the Titanium sheet surface prior to oxidation is of crucial importance for a good adhesion of the TiO$_2$-film, its photoactivity and for a satisfactory stability of the photocurrent of the photoanode during long time operation.

Acknowledgement

The authors are deeply indebted to the Bundesministerium für Wissenschaft und Forschung and the Fonds zur Förderung der wissenschaftlichen Forschung for their generous financial supports, which rendered these investigations.