Rotational Isomerism and the Orientation of the Total Dipole Moment

Ivan Botskor
Abteilung Physikalische Chemie der Universität Ulm

Z. Naturforsch. 35a, 748—756 (1980); received May 8, 1980

A method for determining the orientation of the total dipole moments of distinct rotamers of the same molecule is discussed. Utilizing solely the experimental dipole moments obtained with microwave spectroscopy (gas phase) and an approximate structure, the orientation of the dipole moment can often be determined without use of bond moment considerations. Experimental data from nine rotamer pairs are analyzed to illustrate the method.

Introduction

The Stark effect observed in microwave spectroscopy [1], [2] provides a highly accurate method for measuring the total dipole moment of molecules in the gas phase. But, due to the inherent μ^2 dependence of the Stark shifts, only the absolute values of the dipole moment components (in the principal axis system) can be obtained. The actual orientation of the dipole moment is, nevertheless, of importance as it is ultimately related to the electronic distribution and bonding characteristics of the molecule.

In most microwave work the choice between the possible orientations is generally based on bond moment considerations [3] (which implicitly also assumes polarities) or on additional information obtained by measurement of the dipole moment of isotopic species. In the latter case, the change of the mass distribution rotates the principal axis system and it is sometimes possible to determine the actual orientation ("isotope pulling effect", e.g. [4], [5]). If additional microwave Zeeman spectroscopy data are also available it is possible in some cases to determine the polarity and orientation of the total dipole moment [6], [7].

Results about a number of molecules which have two or more distinct rotameric forms have been published in the past [2], the main point of interest lying generally on the identification of the stable conformations and the potential barriers separating them. In many cases the dipole moments of the rotameric forms have been also measured, and the present paper proposes a simple method utilizing these experimental values for establishing in some cases the relative orientation of the dipole moment for one or sometimes both conformations.

Model

The most general description of rotational isomerism is considering a molecule as being formed by two parts (arbitrarily named top and frame) bound by the internal rotation axis, see Figure 1a. The following considerations refer to those cases where: i) both top and frame are asymmetric tops, ii) the barriers hindering the internal rotation are sufficiently high so that each rotational isomer is observed (in the time scale used in microwave spectroscopy) as a distinct molecule.

The dipole moment of a molecule can be considered as the sum of more or less localized bond moment contributions [3] (which implicitly also assumes polarities) or on additional information obtained by measurement of the dipole moment of isotopic species. In the latter case, the change of the mass distribution rotates the principal axis system and it is sometimes possible to determine the actual orientation ("isotope pulling effect", e.g. [4], [5]). If additional microwave Zeeman spectroscopy data are also available it is possible in some cases to determine the polarity and orientation of the total dipole moment [6], [7].

Results about a number of molecules which have two or more distinct rotameric forms have been published in the past [2], the main point of interest lying generally on the identification of the stable conformations and the potential barriers separating them. In many cases the dipole moments of the rotameric forms have been also measured, and the present paper proposes a simple method utilizing these experimental values for establishing in some cases the relative orientation of the dipole moment for one or sometimes both conformations.

Model

The most general description of rotational isomerism is considering a molecule as being formed by two parts (arbitrarily named top and frame) bound by the internal rotation axis, see Figure 1a. The following considerations refer to those cases where: i) both top and frame are asymmetric tops, ii) the barriers hindering the internal rotation are sufficiently high so that each rotational isomer is observed (in the time scale used in microwave spectroscopy) as a distinct molecule.

The dipole moment of a molecule can be considered as the sum of more or less localized bond moments and charge distributions (e.g. lone electron pairs) in the molecule. The sum of these contributions for the frame and top separately are the corresponding group moments μ_t (top) and μ_f (frame). The vectorial addition of μ_t and μ_f is then the total dipole moment

$$\mu = \mu_{top} + \mu_{frame}$$

Fig. 1.

Reprint requests to Dr. Ivan Botskor, Abteilung Physikalische Chemie der Universität Ulm, Postfach 4066, D-7900 Ulm.

0340-4811 / 80 / 0700-0748 $ 01.00/0. — Please order a reprint rather than making your own copy.
which in case of rotational isomerism can assume different values for each rotamer as the spacial relationship between μ_t and μ_f changes (Figure 1 b).

Two basic assumptions are made for the model: i) The structures of top and frame are considered rigid, thus structurally the rotamers only differ in the value of the dihedral angle Φ (see Figure 1 b). Non-bonded interactions, which often cause structural relaxations are not taken into account. ii) The group moments μ_t and μ_f are rigidly attached to the top and frame, respectively, and have the same magnitude independently of the rotameric form. The vectorial addition of μ_t and μ_f as a function of the dihedral angle can be easily visualized when the coordinate system chosen is such that one axis (X) coincides with the internal rotation axis. In this representation the components of the total dipole moment of the different rotamers can be written as a simple function of μ_{top} and μ_{frame}

$$
\begin{bmatrix}
\mu_{x1} \\
\mu_{y1} \\
\mu_{z1}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \Phi & \sin \Phi \\
0 & -\sin \Phi & \cos \Phi
\end{bmatrix}
\begin{bmatrix}
\mu_{x1} \\
\mu_{y1} \\
\mu_{z1}
\end{bmatrix},
$$

(2)

where the angle Φ can have two or more different values for the distinct rotamers (e.g. $\Phi = 0$ trans or cis, $\Phi = 120^\circ$ gauche). Although the total dipole moment is in principle a function of the dihedral angle, or in other words, of the rotameric form, the component along the internal rotation axis, μ_{x1}, remains invariant, as given in (2) and in Fig. (1 b), thus

$$
|\mu_{x1}| = |\mu_{x2}|,
$$

(3)

The actual usefulness of the rather trivial equation (3) can be seen when the considered XYZ coordinate system is related to the principal axis systems $A^{\text{B}}B^{\text{C}}i$ of the considered rotamers (e.g. $i = \text{cis}$, gauche). Given an approximate knowledge of the geometry the direction cosines d_{jk} between XYZ and $A^{\text{B}}B^{\text{C}}i$ can be calculated and the experimentally measured dipole moment components μ_a, μ_b, μ_c in the principal axis system related to the μ_j of (2):

$$
|\mu_j| = \sum_{k=a,b,c} d_{jk} s_k |\mu_k|, \quad j = x, y, z.
$$

(4)

The actual experimental information refers only to the absolute values of the components, namely $|\mu_{a1}|$, $|\mu_{b1}|$, and $|\mu_{c1}|$. This sign indeterminacy is taken into account in (4) by giving the values $+1$ or -1 to the s_k terms and considering all distinguishable combinations (where for the orientation a change of all signs in row is not distinguishable):

<table>
<thead>
<tr>
<th>s_a</th>
<th>s_b</th>
<th>s_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Using the experimental dipole moment and structural data for two distinct rotamers (e.g. cis and gauche) the values of $|\mu_{x1}|$ and $|\mu_{x2}|$ can be calculated with (4) and table (1) for all possible orientations. The required equality of $|\mu_{x1}| = |\mu_{x2}|$ for both rotamers allows a selection of the possible orientation of the dipole moment in one or both rotamers. The assumed rigidity, invariance of the group moments as well as structural errors and dipole moment measurement errors allow the aforementioned equality to hold only within a margin depending on the molecule considered. Nevertheless, even this approximate equality leads in many cases to an assignment of the orientation as it is shown in Figures 2 to 10.

Examples

Ten rotameric pairs involving rotation around the C—C, C—N and C—O bonds are used as examples (Figs. 2—10) for the determination of the orientation of the total dipole moments. The structure utilized corresponds to the published values for one rotamer where the structure of the second rotamer was simply calculated by varying the dihedral angle. This assumed rigidity is most cases undoubtedly untrue and thus a source of error but necessary for a simple model. The dipole moment components utilized to calculate the possible projections of the total dipole moment $|\mu_{x1}|$ on the internal rotation axis are the published values. The signs of the possible orientations coincide with those given in the principal axis systems in the figures corresponding to each molecule. Those

a assuming that at least one of the group moments is different from zero and it is not parallel to the internal rotation axis.

a in Debye.
b Right hand system.
trans

Fig. 2. propyl fluoride [8].

| a | b | $|\mu_x|_{\text{trans}}$ |
|-----|-----|-----------------|
| $+$ | $+$ | 1.00^\ast bm |
| $+$ | $-$ | 1.77 |

gauche

| a | b | c | $|\mu_x|_{\text{gauche}}$ |
|-----|-----|-----|-----------------|
| $+$ | $+$ | $+$ | 0.92^\ast bm |
| $+$ | $+$ | $-$ | 1.28 |
| $+$ | $-$ | $+$ | 0.79 |
| $+$ | $-$ | $-$ | 1.17 |

cis

Fig. 3. fluoroacetyl fluoride [9].

| a | b | $|\mu_x|_{\text{cis}}$ |
|-----|-----|-----------------|
| $+$ | $+$ | 1.83^\ast bm |
| $+$ | $-$ | 0.24 |
Fig. 4. Propionyl fluoride [10].

Fig. 5. Butene-1 [11].
N-cis LEP-trans

\[
\begin{array}{cccc}
 a & b & |\mu_a|_NcLt \\
 + & + & 0.89^* \text{ bm, i} \\
 - & - & 0.88^* \\
\end{array}
\]

a LEP = Lone Electron Pair.

Fig. 6. Allylamine [12] [13]. Internal Rotation Axis CC.

N-gauche LEP-trans

\[
\begin{array}{cccc}
 a & b & c & |\mu_a|_NcLt \\
 + & + & + & 1.04^* \\
 + & + & - & 1.06^* \\
 - & + & + & 0.32 \\
 - & - & + & 0.27 \\
\end{array}
\]

N-cis LEP-trans

\[
\begin{array}{cccc}
 a & b & |\mu_a|_NcLt \\
 + & + & 0.83\text{ * bm, i} \\
 + & - & 0.43\text{ *} \\
 - & - & 0.48\text{ *} \\
\end{array}
\]

Fig. 7. Allylamine [5], [14]. Internal Rotation Axis CN.

N-cis LEP-gauche

\[
\begin{array}{cccc}
 a & b & c & |\mu_a|_NcLt \\
 + & + & + & 0.25\text{ *} \\
 + & + & - & 0.20\text{ *} \\
 - & - & + & 1.05 \\
 - & - & - & 1.11 \\
\end{array}
\]
Fig. 8. 3-fluoropropene [15].

Fig. 9. 3-3' difluoropropene [16].
orientations which are numerically consistent with the requirement $|\mu_x^1| \approx |\mu_x^2|$ are indicated by an asterisk * beside the numbers and the dashed lines in the figures. The obtained orientations can in some cases be compared to those which were determined by the authors by isotopic substitutions (indicated with i) and those considered reasonable through bond moment considerations with bm).

Two reservations should be made on the possible applicability of the condition $|\mu_x^1| \approx |\mu_x^2|$: i) When the internal rotation axis is parallel or very nearly parallel to a principal axis obviously there will be little or no variation in the value of the calculated $|\mu_x^1|$ components for the different orientations in that particular rotamer as in the example of allylamine N-cis lone-electron pair trans [Fig. (6, 7) and 3-fluoropropene cis (Fig. (9)], where the C—C internal rotation axis is almost parallel to the dipole moment. ii) A very nearly prolate or oblate molecule has to be dealt with special caution as the orientation of two principal axes is a very sensitive function of the structure. In these cases a relatively small structural error can easily rotate the principal axis system in the model with respect to their actual position (in which the dipole moment components were measured). Thus, the calculated direction cosines d_{jk} (Eq. (4)) will be quite different from the true values and the calculation will provide no useful results.

Perpendicular Dipole Moment Components to the Internal Rotation Axis

Under particular symmetry conditions $|\mu_y^1|$ and $|\mu_z^1|$ terms of (2) and (4) can also be of use in the determination of the orientation. Furthermore, their absolute value and relative polarity can be also determined. This calculation is only possible when one rotamer has C_2 symmetry and the second one possesses no symmetry at all. In all examples considered, with the exception of fluoroacetyl fluoride, this condition is met.

By placing the Y axis of the XYZ coordinates system in the symmetry plane of the rotamer with
Cs symmetry, (2) can be written as

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \Phi & \sin \Phi \\
0 & -\sin \Phi & \cos \Phi
\end{bmatrix}
\begin{bmatrix}
\mu_x \\
\mu_y \\
\mu_z
\end{bmatrix}
= \begin{bmatrix}
\mu_x \\
\mu_y \\
\mu_z
\end{bmatrix} + \begin{bmatrix}
\mu_x \\
\mu_y \\
\mu_z
\end{bmatrix}.
\] (5)

Consequently for the \textit{trans} (or \textit{cis}) rotamers \(\Phi = 0\) and the following relation holds:

\[
|\mu_y|^{\text{trans}} = |\mu_y| + |\mu_y|,
\] (6)

whereas for the \textit{gauche} form (\(\Phi\) is the corresponding dihedral angle)

\[
|\mu_y|^{\text{gauche}} = |\cos \Phi |\mu_y + |\mu_y|,
\] (7)

\[
|\mu_z|^{\text{gauche}} = |-\sin \Phi |\mu_y.
\] (8)

The left hand terms of (7, 8) can be calculated using (4) and the actual group moment components \(\mu_y\) and \(\mu_y\) can then be expressed as

\[
|\mu_y| = |\mu_y|^{\text{gauche}}/\sin \Phi,
\] (9)

\[
|\mu_y|^{\pm} = |\mu_y|^{\text{gauche}} \pm \cotan \Phi |\mu_y|^{\text{gauche}}.\] (10)

The fact that the two group moment components \(\mu_y\) and \(\mu_y\) can have the same or opposite polarity has to be taken into account, thus duplicating the possible values which \(\mu_y\) might have (Table 1). The addition

\[
|\mu_y|^{\text{trans pred}} = |\mu_y| \pm |\mu_y^{\pm}|
\] (11)

can then be compared to the equivalent term in the \textit{trans} form (Eq. (6)).

For the true orientation they should be quite similar thus providing an additional criteria for assignment:

\[
|\mu_y|^{\text{trans pred}} \simeq |\mu_y|^{\text{trans}}.\] (12)

The actual steps of the calculation are shown for propyl fluoride, Figure (2). The analysis utilizing the condition \(|\mu_x|^{\text{trans}} \simeq |\mu_x|^{\text{gauche}}\) identifies the true orientation in the \textit{trans} form as being \(a) + b) + (|\mu_x|^{\text{trans}} = 1.00 \text{D}\) and in the \textit{gauche} form as being most probably \(a) + b) + (|\mu_x|^{\text{gauche}} = 0.92 \text{D}\) but so as to discard any other possibilities a calculation using the aforementioned steps is convenient and is presented in Table 2. It can be seen that of the eight possible values for \(|\mu_y|^{\text{trans pred}}\) only one (1.62 D) is sufficiently near to the \(|\mu_y|^{\text{trans}}\) value 1.72 D calculated with Eq. (4) for the known true orientation \(a) + b) + \text{ in the \textit{trans} rotamer. The results confirm the assignment in the \textit{gauche} form of \(a) + b) + c) + \text{ and allows the discarding any other possibility. In the course of the assignment the relative polarities of \(|\mu_y|\) and \(|\mu_y|\) as well as their absolute values have been also determined:

\[
|\mu_y|^{\text{CH}_3F} \simeq 1.71 \text{D},
\]

\[
|\mu_y|^{\text{ETYL}} \simeq 0.09 \text{D, with different polarities}.\]

It should be stressed that the calculation makes in principle no a priori supposition whatsoever concerning the magnitudes, polarizations and directions of the considered group moments and only microwave data from one molecule is utilized. This allows for an independent determination which can be compared with results derived from other sources. As for example, if the \(\mu_{\text{top}}\) is \textit{assumed} in propyl fluoride to lie along the C—F bond, utilizing the assigned orientation for the total dipole moment and the calculated value of \(|\mu_y|\), the bond moment is calculated as 1.83 D, a value which can be compared to bond moment values.

Ethyl formate is of particular interest as it serves as an example of the limitations and possibilities of this type of calculation, see Figure 10. No definite assignment can be made on the basis of the \(|\mu_x|^{\text{trans}}\) and \(|\mu_x|^{\text{gauche}}\) values, the only positive result is that two possible orientation pairs (1) \textit{gauche} and

<table>
<thead>
<tr>
<th>Orientation of the gauche form</th>
<th>(\mid \mu_y \mid^{\text{gauche}})</th>
<th>(\mid \mu_z \mid^{\text{gauche}})</th>
<th>(\mid \mu_y \mid)</th>
<th>(\mid \mu_y \mid^{\text{trans pred}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (b) (c)</td>
<td>0.77</td>
<td>1.48</td>
<td>1.71</td>
<td>1.62</td>
</tr>
<tr>
<td>(a) (b) (c)</td>
<td>1.19</td>
<td>0.73</td>
<td>0.85</td>
<td>1.61</td>
</tr>
<tr>
<td>(a) (b) (c)</td>
<td>1.73</td>
<td>0.01</td>
<td>2.00</td>
<td>2.72</td>
</tr>
<tr>
<td>(a) (b) (c)</td>
<td>1.30</td>
<td>0.73</td>
<td>1.50</td>
<td>2.05</td>
</tr>
</tbody>
</table>

\begin{align*}
\text{Assigned orientation} & \quad a \quad b \quad \mid \mu_y \mid^{\text{trans}} \quad a \quad \mid \mu_y \mid^{\text{trans pred}} \\
\text{In the trans form} & \quad + \quad + \quad 1.72^* \\
\end{align*}

\(^a\) Polarity of \(\mu_y\) identical as \(\mu_y\).
\(^b\) Polarity of \(\mu_y\) opposite as \(\mu_y\).
trans or (II) gauche and trans can be distinguished (Table 3).

A second calculation involving the perpendicular component to the rotation axis, as was explicitly shown for propyl fluoride in Table 2, could also not lift the indetermination. Thus, in this case if no comparison with other molecules is made, the only positive conclusion is that the orientations are either (I) or (II) for both rotamers. That is if the orientation is assigned for one rotamer (e.g. isotopic substitution) the orientation in the other rotamer is also determined.

On the other hand orientation (I) would require $|\mu_y|_{\text{ethyl}} \approx 0.3 \text{ D}$ and $|\mu_y|_{\text{formate}} \approx 1.7 \text{ D}$ in contrast with orientation (II) $|\mu_y|_{\text{ethyl}} = 0.8 \text{ D}$ and $|\mu_y|_{\text{formate}} = 0.1 \text{ D}$. The results obtained with methyl formate [18] and other molecules with ethyl groups (e.g. in propyl fluoride, Table 2, $|\mu_y|_{\text{ethyl}}$ was calculated as 0.09 D) give strong grounds to the assumption that orientation (I) is most probably correct.

Acknowledgements

The present work was supported by the Deutsche Forschungsgemeinschaft. The support of Professor H. D. Rudolph is gratefully acknowledged.

<table>
<thead>
<tr>
<th>TRANS</th>
<th>GAUCHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>(I)</td>
<td>+</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>(II)</td>
<td>+</td>
</tr>
</tbody>
</table>