Note on a Topological Property of the HOMO-LUMO Separation

Ivan Gutman
Faculty of Science, University of Kragujcvac, Yugoslavia

Z. Naturforsch. 35a, 458—460 (1980); received September 13, 1979

The effect of cycles on the HOMO-LUMO separation of alternant conjugated hydrocarbons is examined. A general topological regularity is established, namely that (4m + 2)-membered conjugated circuits increase and (4m)-membered conjugated circuits decrease the HOMO-LUMO separation. Möbius cycles exhibit an opposite effect.

In recent years a graph theoretical technique was developed, which enabled one to analyse and partially understand the dependence of the \(\pi \)-electron properties of conjugated molecules on molecular topology [1]. The HOMO-LUMO separation (i.e. the difference between the energy of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)) belongs among those \(\pi \)-electron characteristics of a conjugated system, for which the graph theoretical approach was not very successful. The previously obtained results about the topological properties of the HOMO-LUMO separation are rather limited [2—4]. In the present paper we offer a general topological rule which elucidates the effect of cycles on the HOMO-LUMO separation of alternant conjugated hydrocarbons.

An auxiliary graph theoretical polynomial

According to the Sachs theorem [1, 5] the characteristic polynomial of a graph \(G \) (with \(n \) vertices) is calculated as

\[
\varphi(G) = \varphi(G, x) = \sum_{s \in S} (-1)^{c(s)} 2^{r(s)} x^{n - n(s)} \tag{1}
\]

where \(c(s) \), \(r(s) \) and \(n(s) \) is the number of components, cyclic components and vertices, respectively, of the Sachs graph \(s \). The summation goes over the set \(S \) of all Sachs graphs of the graph \(G \).

The matching polynomial \(\chi(G) \) of the graph \(G \) can be presented as [6]

\[
\chi(G) = \chi(G, x) = \sum_{s \in S^0} (-1)^{c(s)} x^{n - n(s)} \tag{2}
\]

with the summation going over the set \(S^0 \) of all acyclic Sachs graphs of \(G \) (i.e. those elements of \(S \) which have the property \(r(s) = 0 \)).

Let \(C_1, C_2, \ldots, C_r \) be the cycles of the graph \(G \) and let \(t = (t_1, t_2, \ldots, t_r) \) be an \(r \)-dimensional vector, the components of which are arbitrary numbers. We shall associate the weight \(t_i \) with the cycle \(C_i \) \((i = 1, 2, \ldots, r) \).

Let \(T(s) \) be the product of the weights of all those cycles which belong to the Sachs graph \(s \). If \(r(s) = 0 \), then by definition \(T(s) = 1 \). The polynomial \(\mu(G, t) \)

\[
\mu(G) = \mu(G, t) = \mu(G, t, x) = \sum_{s \in S} (-1)^{c(s)} 2^{r(s)} x^{n - n(s)} T(s) \tag{3}
\]

is a generalization of both the characteristic and the matching polynomials. Namely, for \(t = (1, 1, \ldots, 1) \), Eq. (3) reduces to Eq. (1) since the \(T(s) = 1 \) for all \(s \in S \). For \(t = (0, 0, \ldots, 0) \), Eq. (3) coincides with Eq. (2) because then \(T(s) = 1 \) for \(s \in S^0 \) and \(T(s) = 0 \) for \(s \in S \setminus S^0 \). Further, if \(G^* \) is the Möbius graph derived from the Hückel graph \(G \) [7], then the polynomial \(\varphi(G^*) \) is obtained from Eq. (3) by setting \(t_i = -1 \) if the edge with negative weight belongs to the cycle \(C_i \) and \(t_i = +1 \) if the edge with negative weight does not belong to \(C_i \).

The parameter \(t_i \) can be understood as the extent to which the cycle \(C_i \) contributes to the characteristic polynomial. When \(t_i = +1 \), then the contribution of \(C_i \) is "normal". When \(t_i = 0 \), the contribution of \(C_i \) is neglected. The choice \(t_i = -1 \) corresponds to Möbius cycles.

Thus, for example, if we wish to neglect the contribution of a single cycle, say \(C_1 \), to \(\varphi(G) \), then we must set \(t = (0, 1, \ldots, 1) \). This leads to

\[
\mu(G) = \varphi(G) + 2 \varphi(G - C_1)
\]

as it was demonstrated elsewhere [8].
The \(\mu \) polynomial can be expanded as
\[
\mu(G, t) = \alpha(G) - 2 \sum_i t_i \alpha(G - C_i) + 4 \sum_{i,j} t_i t_j \alpha(G - C_i - C_j) - 8 \sum_{i,j,k} t_i t_j t_k \alpha(G - C_i - C_j - C_k) + \cdots.
\]

Therefrom,
\[
\frac{\partial \mu(G, t)}{\partial t_a} = -2 \alpha(G - C_a) + 4 \sum_j t_j \alpha(G - C_a - C_j) - 8 \sum_{j,k} t_j t_k \alpha(G - C_a - C_j - C_k) + \cdots
\]
and we obtain the following important conclusion:
\[
\frac{\partial \mu(G, t)}{\partial t_a} = -2 \mu(G - C_a, t).
\]

The method

In this paper we will be interested in the smallest non-negative zero of \(\varphi(G, x) \), which will be denoted by \(h \). If \(G \) is a bipartite graph (i.e. the molecular graph of an alternant hydrocarbon [1]), then \(2h \) is just the HOMO-LUMO separation (in \(\beta \) units) of the pertinent \(\pi \)-electron system [3, 4].

Let \(h^0 \) be the smallest non-negative zero of the matching polynomial of \(G \). Then \(2h^0 \) is the HOMO-LUMO separation of the reference structure of the conjugated \(\pi \)-electron system under consideration. Since in the matching polynomial the effect of all cycles is neglected, the quantity \(2(h - h^0) \) can be interpreted as the joint effect of all cycles on the HOMO-LUMO separation.

The generalization (3) enables the introduction of a function \(h(t) \) with \(r \) variables \(t_1, t_2, \ldots, t_r \), which is a zero of the polynomial \(\mu(G, t) \) and which has the properties \(h(t) = h \) for \(t = (1, 1, \ldots, 1) \) and \(h(t) = h^0 \) for \(t = (0, 0, \ldots, 0) \). In general \(h(t) \) is a complex number.

In the following we will restrict our considerations to the case when \(h(t) \neq 0 \). Then also \(\mu'(G, t, h(t)) \neq 0 \).

Series expansion of \(h(t) \) gives
\[
h(t) = h^0 + \sum_{a=1}^r t_a \frac{\partial h(t)}{\partial t_a} + \cdots. \tag{4}
\]

Since \(\mu(G, t, h(t)) = 0 \), one concludes that
\[
\frac{\partial \mu(G, t, h(t))}{\partial t_a} = -\frac{\partial \mu(G, t, h(t))}{\partial t_a} \quad \text{and} \quad \frac{\partial \mu(G, t, h(t))}{\partial h(t)} = \frac{\partial \mu(G, t, h(t))}{\partial h(t)}.
\]

If we neglect the higher order terms in the expansion (4), then for \(t = (1, 1, \ldots, 1) \) we obtain
\[
h \approx h^0 + 2 \sum_{a=1}^r \frac{\varphi(G - C_a, h)}{\varphi(G, h)}
\]
i.e.
\[
2(h - h^0) \approx \sum_a R(G, C_a)
\]
where
\[
R(G, C) = 4 \frac{\varphi(G - C, h)}{\varphi(G, h)}.
\]
Equation (5) has a natural interpretation, namely that the quantity \(R(G, C) \) represents (approximately) the effect of the cycle \(C \) on the HOMO-LUMO separation of the alternant conjugated hydrocarbon, whose molecular graph is \(G \). Furthermore, the joint effect of all cycles on the HOMO-LUMO separation is (approximately) additive.

Discussion

Whether a cycle \(C \) has an increasing or decreasing effect on the HOMO-LUMO separation depends mainly on the sign of \(\varphi(G-C) \). We show now that (provided some acceptable assumptions are fulfilled) the sign of \(R(G, C) \) depends solely on the size \(|C| \) of the cycle \(C \).

Let the number of vertices of the graph \(G \) be \(n \). Then \(G - C \) possesses \(n - |C| \) vertices. It is easy to verify that
\[
\text{sign } \varphi'(G, h) = -(-1)^{n/2}.
\]

In order to determine the sign of \(\varphi(G - C, h) \) we will assume that \(h \) is smaller than the smallest positive zero of \(\varphi(G - C) \). Despite a few exceptions, this assumption is true for the great majority of bipartite molecular graphs.

Two possibilities exist: either \(\varphi(G - C) = 0 \) or \(\varphi(G - C, 0) = 0 \). The former will happen if \(C \) is a conjugated circuit in \(G \) [9]. Then
\[
\text{sign } \varphi(G - C, h) = (-1)^{n-|C|}.
\]

Therefore,
\[
\text{sign } R(G, C) = (-1)^{|C|/2}
\]
and one deduces the following result.
Rule 1.
(4m + 2)-membered conjugated circuits in an alternant hydrocarbon have an increasing effect on the HOMO-LUMO separation; (4m)-membered conjugated circuits have a decreasing effect on the HOMO-LUMO separation.

If $C^* = C_a$ is a Möbius-type cycle, then one has to set $t_a = -1$ in Equation (4). Consequently, Eq. (5) is to be slightly modified for Möbius graphs. The effect of a Möbius cycle on the HOMO-LUMO separation is equal to $R(G^*, C^*) = -R(G, C) = -4\varphi(G - C, h)/\varphi'(G, h)$.

Rule 2.
(4m + 2)-membered conjugated Möbius circuits in an alternant Möbius system have a decreasing effect on the HOMO-LUMO separation; (4m)-membered conjugated Möbius circuits have an increasing effect on the HOMO-LUMO separation.

If C is not a conjugated circuit in G [9], then $\varphi(G - C, 0) = 0$ and therefore also $\varphi(G - C, h) \approx 0$.

Rule 3.
If a cycle in an alternant hydrocarbon or Möbius system is not a conjugated circuit, then its effect on the HOMO-LUMO separation is small and is of no chemical significance. The sign of the effect of such cycles cannot be reliably deduced on the basis of the $R(G, C)$ index, since it (the sign) depends on the higher order terms of Equation (4).
