The V-V Sector of the Lee Model

Herbert Rainer Petry and Mikolaj Sawicki *

Institut für Theoretische Kernphysik der Universität Bonn

Z. Naturforsch. 33a, 1—6 (1978); received September 28, 1977

The Schrödinger-equation in the V-V sector of the Lee model is investigated. We obtain a three-body Lippmann-Schwinger equation, with a new type of disconnectedness, and construct the resolvent operator by means of a modified Faddeev technique.

1. Introduction

The Lee-model [1] provides us with a soluble field-theory, which allows a detailed discussion of renormalization effects. It exists in a variety of forms, the static model [1], the quasi-relativistic model [2] and the “Galilee” model [3, 4] which have in common the peculiar interaction $V \leftrightarrow N\theta$ between two kinds of fermions V, N and a boson θ, and differ otherwise in the specific choice of the free single-particle energies and the interaction form factor. In this paper we concentrate mainly on the so-called VV-sector which is the most difficult one considered so far [5]. As we will show in Sect. 2, it requires the solution of a Faddeev-type equation with renormalized energies. We assume in this paper that the coupling constant renormalization is always finite, which can be achieved, e.g., in the Galilee model or for specific form factors, but we allow for infinite energy renormalization.

Section II reviews the V and the $V\theta$-sector. In Sect. III we study the VV-sector, eliminate the unrenormalized quantities by renormalized ones and show, how the solutions of this sector can be obtained by the techniques developed by Faddeev [6].

2. The Lee-Model and its First Two Sectors

The Hamiltonian of the Lee-model is given by

$$H = H_0 + H_I,$$

where

$$H_0 = \int d^3p \left[\omega_V(p) V^+(p) V(p) \right. \\
+ \left. \omega_N(p) N^+(p) N(p) + \epsilon(p) a^+(p) a(p) \right]$$

and

$$H_I = \lambda_0 \int d^3p d^3q \left[V^+(p) N(p - q) a(q) h(q) \right. \\
+ \left. N^+(p - q) a^+(p) V(p) h(q) \right]$$

with the form factor function

$$h: R^3 \rightarrow C.$$

The notation is self-explanatory: $N^+(p)$ and $N(p)$ are the creation and annihilation operators for a fermion N of momentum p; $V^+(p)$, $V(p)$ and $a^+(p)$, $a(p)$ play the same role for the fermion V and the boson θ, respectively. The function $\omega(p)$ is the energy of the bare particle V of momentum p, and $\omega_N(p)$ and $\epsilon(p)$ are the energies of the particles N and θ, respectively.

In our paper we consider two particular forms of Hamiltonians corresponding to two different situations:

(i) The case with relativistic kinematics, when $\omega_N(p) = (p^2 + m_N^2)^{1/2}$ etc., and no cut-off function is introduced in order to avoid divergences, and

(ii) The case without relativistic particles, when $\omega_N(p) = p^2/2m_N$ etc., and no cut-off function is introduced, i.e. $h(p) = 1$.

Unless explicitly specified, our formulae hold in both cases. For simplicity, the particles are regarded as spinless, and the usual commutation rules hold:

$$[a(p), a^+(p')] = [V(p), V^+(p')] = [N(p), N^+(p')] = \delta(p - p')$$

and all other commutators (or anticommutators) vanish. The two operators Q_1, Q_2:

$$Q_1 = \int d^3p \left[V^+(p) V(p) + N^+(p) N(p) \right],$$

$$Q_2 = \int d^3p \left[V^+(p) V(p) + a^+(p) a(p) \right]$$

are constants of motions and their eigenvalues define the particular “sectors” of the Lee-model.

II.1. The single V sector is defined by the eigenvalues $Q_1 = 1$ and $Q_2 = 1$, so that the general form
of the state vector in this sector is
\[\psi_V = \left[\int \! d^3k \, \varphi(k) \right] V^+(k) + \left[\int \! d^3l \, d^3m \beta(l, m) N^+(l) a^+(m) \right] \ket{0}. \]

We require that the state \(\psi_V \) is an eigenstate of the total Hamiltonian \(H \) with eigenvalue \(E \), i.e.
\[(E - H_0) \psi_V = H_I \ket{\psi_V}. \]

Comparing the coefficients of both components of the state vector \(\psi_V \) we obtain the equations
\[(E - \omega_V(k)) \varphi(k) = \lambda_0 \int \! d^3q \, \delta(k - q, q) \beta(k - q, q) \]
and
\[\beta(l, m) = \lambda_0 \delta(l, m) \left[E - \omega_N(l) - \epsilon(m) \right]^{-1} \cdot \varphi(l + m). \]

They imply that
\[R(E, k) \varphi(k) = 0 \]
with
\[R(E, k) = E - \omega_V(k) - \lambda_0^2 \int \! d^3m \, q(m) \cdot \left[E - \omega_N(k - m) - \epsilon(m) \right]^{-1} \]
and \(q(m) = \left| \delta(h(m)) \right|^2 \).

A nontrivial solution of Eq. (0) exists if and only if \(R(E, k) \) vanishes for some value of \(\epsilon \) denoted by \(B(E, k) \).

If this condition is not satisfied, the state \(x_{pv} \) we obtain the equations
\[\left(E - \omega_V^R(k) \right) \varphi(k) = \lambda_0 \int \! d^3q \, \delta(k - q, q) \beta(k - q, q) \]
and
\[\beta(l, m) = \lambda_0 \delta(l, m) \left[E - \omega_N(l) - \epsilon(m) \right]^{-1} \cdot \varphi(l + m). \]

The quantity \(\omega_V^R \) has the meaning of a renormalized, i.e. physical, energy of the \(V \)-particle.

Evidently
\[\omega_V^R(k) - \omega_N(k + m) - \epsilon(m) = 0 \]
must hold (for all \(k, m \)), if the last formula has any meaning. If this condition is not satisfied, the \(V \)-particle will decay, a case which we exclude. We also exclude the possibility that the equation
\[R(E, k) = 0 \]
has other solutions than \(\omega_V^R(k) \).

Since \(R(\omega_V^R(k), k) \neq 0 \), we redefine
\[R(E, k) = R(E, k) - R(\omega_V^R(k), k) \]
(2)
where
\[Z(E, E', k) = 1 + \lambda_0^2 \int \! d^3q \, q(q) \cdot \left[E - \omega_N(k - q) - \epsilon(q) \right]^{-1} \cdot \left[E' - \omega_N(k - q) - \epsilon(q) \right]^{-1}. \]

There exist cases in which \(R \) is not well-defined but \(Z \) is. It turns out that \(R(E, k) \) appears also in the other sectors of the Lee-model and contains the only divergent integrals of the theory which have to be renormalized. If one succeeds in showing that \(R \) can be consistently redefined by Eq. (2) in all the other equations of motion (belonging to different sectors), one has still a meaningful theory.

The function \(Z(E, \omega_V^R(k), k) \) is connected with the normalization of the state with energy \(\omega_V^R(k) \). Indeed, set
\[\alpha(k) = \delta(k - p) Z^{-1/2}(\omega_V^R(k), \omega_V^R(k), k). \]

According to the previous discussion, this choice defines the states \(\ket{\rho} \) with energy \(\omega_V^R(p) \) by
\[\ket{\rho} = \left(V^+(p) + \lambda_0 \int \! d^3m \, \delta(m) \cdot \left[\omega_V^R(p) - \omega_N(p - m) - \epsilon(m) \right]^{-1} \cdot N^+(p - m) a^+(m) \right) \ket{0} \cdot Z^{-1/2}(\omega_V^R(p), \omega_V^R(p), p). \]

One finds that
\[\langle \rho | \rho' \rangle = \delta(p - p'), \]
i.e. the state \(\ket{\rho} \) is correctly normalized as an eigenstate of energy and momentum.

II.2. The \(V^0 \)-sector is characterized by the eigenvalues \(Q_1 = 1 \) and \(Q_2 = 2 \), and the general form of the state vector is
\[\psi_{V^0} = \int \! d^3k \, d^3m \, \varphi(k, m) \cdot V^+(k) a^+(m) \ket{0} + \int \! d^3k \, d^3m_1 \, d^3m_2 \beta(k, m_1, m_2) \cdot N^+(k) a^+(m_1) a^+(m_2) \ket{0}. \]

Bose-Einstein statistics requires that
\[\beta(k, m_1, m_2) = \beta(k, m_2, m_1). \]

If \(\psi_{V^0} \) is an eigenstate of energy, it must hold that:
\[(E - H_0) \psi_{V^0} = H_I \psi_{V^0} \]
which yields
\[(E - \omega_V(k) - \epsilon(m)) \varphi(k, m) = 2 \lambda_0 \int \! d^3q \, \delta(q) \beta(k - q, q, m), \]
\[(E - \omega_N(k) - \epsilon(m_1) - \epsilon(m_2)) \beta(k, m_1, m_2) = S_{m_1 m_2} \lambda_0 \delta(h(m_1)) \varphi(k + m_1, m_2), \]
where \(S_{m_1 m_2} \) is the symmetrization operator in the boson momenta:
\[S_{m_1 m_2} \delta(f(m_1, m_2) + f(m_2, m_1)). \]
Eliminating β by means of the last formula leads to the equation

$$R(E - \epsilon(m), k) \chi(k, m) = \lambda_0^2 \hbar(m) \int d^3q \tilde{h}(q)$$

$$\cdot \left[E - \epsilon(m) - \omega_N(k - q) - \epsilon(q) \right]^{-1} \chi(k - q + m, q).$$

Using formula (2), which redefines R with help of the renormalized energy $\omega_v R$ and introducing the function $\tilde{\chi}(k, l)$ by

$$\tilde{\chi}(k, l) = \chi(k, l) / \hbar(l)$$

we find immediately

$$(E - \omega_v R(k) - \epsilon(m)) \cdot Z(\omega_v R(k), E - \epsilon(m), k) \tilde{\chi}(k, m)$$

$$= \lambda_0^2 \int d^3q q(q) \left[E - \epsilon(m) - \omega_N(k - q) - \epsilon(q) \right]^{-1}$$

$$\cdot \tilde{\chi}(k - q + m, q).$$

This equation shows that the $V\theta$-sector is indeed fully described by renormalized quantities.

3. The $V\theta$-Sector

3.1. Renormalization

The $V\theta$-sector is characterized by the values $Q_1 = 2$ and $Q_2 = 2$; the general form of a state in this sector is

$$\varphi_{VV} = \int d^3k_1 d^3k_2 \chi(k_1, k_2) V^+(k_1) V^+(k_2) |0\rangle$$

$$+ \int d^3k d^3m \beta(k, l, m) V^+(k) \gamma(l_1, l_2, m_1, m_2) N^+(l_1) N^+(l_2) a^+(m_1) a^+(m_2) |0\rangle$$

and the correct statistics requires that

$$\chi(k_1, k_2) = - \chi(k_2, k_1), \quad \gamma(l_1, l_2, m_1, m_2) = - \gamma(l_2, l_1, m_1, m_2) = \gamma(l_1, l_2, m_1, m_2).$$

If φ_{VV} is an eigenfunction of the Hamiltonian \hat{H} with eigenvalue E, then

$$(E - H_0) \varphi_{VV} = H_1 \varphi_{VV},$$

which implies that

$$[E - \omega_v (k_1) - \omega_v (k_2)] \chi(k_1, k_2) = A_{k_1, k_2} \lambda_0 \int d^3q \tilde{h}(q) \beta(k_1, k_2 - q, q),$$

$$[E - \omega_v (k) - \omega_N (l) - \epsilon(m)] \beta(k, l, m) = 2 \lambda_0 \hbar(m) \chi(k, l + m) + 4 \lambda_0 \int d^3q \tilde{h}(q) \gamma(k - q, l, q, m)$$

and

$$[E - \omega_N (l_1) - \omega_N (l_2) - \epsilon(m_1) - \epsilon(m_2)] \gamma(l_1, l_2, m_1, m_2) = - A_{l_1, l_2} S_{m_1, m_2} \lambda_0 \hbar(m_2) \beta(l_2 + m_2, l_1, m_1)$$

where A_{l_1, l_2} and S_{m_1, m_2} are the antisymmetrisation and symmetrisation operators in fermion and boson momenta, respectively,

$$A_{l_1, l_2} = \frac{1}{2} (f(l_1, l_2) - f(l_2, l_1))$$

and S_{m_1, m_2} has been defined in the last section. We define $\tilde{\beta}$ by

$$\tilde{\beta}(k, l, m) = \beta(k, l, m) / \hbar(m)$$

and eliminate γ. The result is given by the equations:

$$(E - \omega_v (k) - \omega_N(l) - \epsilon(m)) \tilde{\beta}(k, l, m)$$

$$= 2 \lambda_0 \chi(k, l + m) + \lambda_0^2 \int d^3q q(q) [E - \omega_N(l) - \epsilon(m) - \omega_N(k - q) - \epsilon(q)]^{-1}$$

$$\cdot [\tilde{\beta}(k - q + m, l, q) - \tilde{\beta}(l + m, k - q, q) + \tilde{\beta}(k, l, m) - \tilde{\beta}(l + q, k - q, m)]$$

(3)

and

$$[E - \omega_v (k_1) - \omega_v (k_2)] \chi(k_1, k_2) = \frac{1}{2} \lambda_0 \int d^3q q(q) [\tilde{\beta}(k_1, k_2 - q, q) - \tilde{\beta}(k_2, k_1 - q, q)].$$

(4)

We observe that the third term under integral sign in (3) provides us, in an analogy to the $V\theta$-sector, with the off-shell energy renormalization of the V-particle energy $\omega_v (k)$; proceeding as in the previous section we rewrite Eq. (3) in the form

$$[E - \omega_v R(k) - \omega_N(l) - \epsilon(m)] \tilde{Z}(E - \omega_N(l) - \epsilon(m), \omega_v R(k), k) \tilde{\beta}(k, l, m)$$

$$= 2 \lambda_0 \chi(k, l + m) + \lambda_0^2 \int d^3q q(q) [E - \omega_N(l) - \epsilon(m) - \omega_N(k - q) - \epsilon(q)]^{-1}$$

$$\cdot [\tilde{\beta}(l + q, k - q, m) + \tilde{\beta}(k - q + m, l, q) - \tilde{\beta}(l + m, k - q, q)].$$

(5)
where $Z(E - \omega_N(l) - \epsilon(m), \omega^R(k), k)$ is again the half-off-shell value of $Z(E, E', k)$ defined in the last section. Equation (5) is then expressed by renormalized quantities only. We try to do this for (4), too.

To this end we first rewrite the Eq. (5) in the form of a Lippmann-Schwinger equation; (hereafter we shall use the symbols k, l and m to describe the momenta of particles V, N and θ, respectively):

\[
 \int \! d^3k' \! d^3l' \! d^3m' \langle k, l, m \mid G_{03}^{R}(E)^{-1} \mid k', l', m' \rangle \tilde{\beta}(k', l', m')
 = 2\lambda_0 \alpha(k, l + m) + \int \! d^3k' \! d^3l' \! d^3m' \langle k, l, m \mid V(E) \mid k', l', m' \rangle \tilde{\beta}(k', l', m'),
\]

(6)

where

\[
 \langle k, l, m \mid G_{03}^{R}(E)^{-1} \mid k', l', m' \rangle
 = \delta(P - P') \delta(l - l') \delta(m - m') [E - \omega^R(k) - \omega_N(l) - \epsilon(m) \cdot Z(E - \omega_N(l) - \epsilon(m), \omega^R(k), k)
\]

and P, P' are the total momenta of the system:

$P = k + l + m, \quad P' = k' + l' + m'$.

The potential V has the form

\[
 V(z) = V_1(z) + V_2(z) + V_x(z)
\]

with

\[
 \langle k, l, m \mid V_1(E) \mid k', l', m' \rangle
 = - \delta(P - P') \delta(m - m') \lambda_0^2 \hat{q}(k - l') [E - \omega_N(l) - \epsilon(m) - \omega_N(l') - \epsilon(k - l')]^{-1},
\]

\[
 \langle k, l, m \mid V_2(E) \mid k', l', m' \rangle
 = + \delta(P - P') \delta(l - l') \lambda_0^2 \hat{q}(m') [E - \omega_N(l) - \epsilon(m) - \omega_N(k - m') - \epsilon(m')]^{-1},
\]

and

\[
 \langle k, l, m \mid V_x(E) \mid k', l', m' \rangle
 = - \delta(P - P') \delta(k - l' - m') \lambda_0^2 \hat{q}(m') [E - \omega_N(l) - \epsilon(m) - \omega_N(k - m') - \epsilon(m')]^{-1}.
\]

The detailed discussion of the potentials is given in the next section. We define now the total Green operator G by

\[
 G(E) = [G_{03}^{R}(E)^{-1} - V(E)]^{-1},
\]

and rewrite the Eq. (6) in the form

\[
 \tilde{\beta}(k, l, m) = \int \! d^3k' \! d^3l' \! d^3m' \langle k, l, m \mid G(E) \mid k', l', m' \rangle 2\lambda_0 \alpha(k', l' + m').
\]

Substituting the last equation into (4) we get

\[
 [E - \omega^R(k_1) - \omega^R(k_2)] \alpha(k_1, k_2)
 = \lambda_0^2 \int \! d^3q \hat{q}(q) d^3k' d^3l' d^3m' \langle k_1, k_2 - q, q \mid G(E) \mid k', l', m' \rangle \alpha(k', l' + m') - (k_1 \leftrightarrow k_2).
\]

(7)

We introduce now the T-operator for the $VN\theta$-system:

\[
 T(z) = V(z) + V(z) G(z) V(z).
\]

(8)

The following identities hold

\[
 G(z) = G_{03}^{R}(z) + G_{03}^{R}(z) T(z) G_{03}^{R}(z)
\]

(9)

and

\[
 T(z) = V(z) + V(z) G_{03}^{R}(z) T(z).
\]

(10)

We insert now (9) into Eq. (7) and observe that the first term of Eq. (9) provides us with the renormalization of the energies of the V-particles and that we can write

\[
 [E - \omega^R(k_1) - \omega^R(k_2) + AE(k_1, k_2)] \alpha(k_1, k_2)
 = \lambda_0^2 \int \! d^3q \hat{q}(q) d^3k' d^3l' d^3m' \langle k_1, k_2 - q, q \mid G_{03}^{R}(E) \cdot T(E) \cdot G_{03}^{R}(E) \mid k', l', m' \rangle \alpha(k', l' + m') - (k_1 \leftrightarrow k_2),
\]

(7)
where

\[AE(k_1, k_2) = \lambda_0^2 \int \, d^3m \, \phi(m) \left\{ \{ \omega_R(k_1) - \omega_N(k_2 - m) - \epsilon(m) \}^{\text{in}} - \{ E - \omega_R(k_1) - \omega_N(k_2 - m) - \epsilon(m) \} \cdot Z \{ E - \omega_N(k_2 - m) - \epsilon(m), \omega_R(k_1), 1 \} \right\} \cdot \delta(k_1 - k_2). \]

is a finite quantity. This achieves our goal to express (7) in terms of renormalized energies.

3.2. The Faddeev equations

We are now coming to the construction of the three-body operator, defined by Eq. (8); to this end we consider the potentials \(V_1, V_2 \) and \(V_x \), defined in the last section. The potentials \(V_1 \) and \(V_2 \) correspond to the two-body energy-dependent interactions \(V-N \) and \(V-\theta \) imbedded in a three-body space, as is exhibited by the presence of delta functions conserving the momentum of spectator particles \(\theta \) and \(N \), respectively. Therefore, they give rise to the usual disconnected graphs in the three-body space, shown in Figures 1a, 1b. (The overall delta function, common for all three potentials represents, of course, conservation of the total momentum.) In contrast to \(V_1 \) and \(V_2 \), the interaction \(V_x \) changes all individual momenta of the particles, but due to the additional delta function gives still rise to the disconnected diagram 1c, yielding in this way a new type of a quasi-three-body force specific for the Lee-model.

It is interesting to note that the iterated product \(V_x G_{03}^R V_x \) generates the conservation of momentum of the \(V \)-particle as it is shown in Fig. 2, and, therefore, corresponds to the two-body \(N\theta \)-interaction originally not present in the potential of our Lippmann-Schwinger equation.

In order to construct \(T \) we have to sum up all diagrams exhibiting the same type of disconnectedness. To this end we consider all possible types of iterations in Equation (10). Following Stingl [7] we introduce a symbolic notation \(\delta_N, \delta_1, \delta_x \) and \(\delta_V \) for the delta functions in \(V_1, V_2, V_x \) respectively and write, for instance \(\delta_x \delta_x \delta_x \rightarrow \delta_V \), i.e. two terms with momentum \(\delta \)-functions \(\delta_x \) and the operator \(G_{03}^R \), sandwiched in between, give after operator multiplication a term with a \(\delta \)-function \(\delta_V \). By inspection of all possible diagrams we find the following “disconnectedness multiplication table” (see Fig. 3) where the empty box means that the corresponding “disconnectedness multiplication” leads to a fully connected graph.

Now it is quite easy to sum up all graphs with a given type of disconnectedness: we define

\[
\begin{align*}
t_1 & = V_1 + V_1 G_{03}^R V_1 + V_1 G_{03}^R V_1 G_{03}^R V_1 + \ldots, \\
t_2 & = V_2 + V_2 G_{03}^R V_2 + V_2 G_{03}^R V_2 G_{03}^R V_2 + \ldots, \\
t_x & = V_x + V_x G_{03}^R V_x G_{03}^R V_x + \ldots, \\
t_V & = V_x G_{03}^R V_x + V_x G_{03}^R V_x G_{03}^R V_x G_{03}^R V_x + \ldots,
\end{align*}
\]

and observe that the following integral equations hold:

\[
\begin{align*}
t_1 &= V_1 + V_1 G_{03}^R t_1, \\
t_2 &= V_2 + V_2 G_{03}^R t_2, \\
t_x &= (t_x) \left(\begin{array}{cc} V_x & 0 \\ 0 & V_x \end{array} \right) G_{03}^R (t_x). \\
t_V &= (t_V) \left(\begin{array}{cc} V_x & 0 \\ 0 & V_x \end{array} \right) G_{03}^R (t_V).
\end{align*}
\]

We introduce now the channel Green operators \(G_x \) for the three potentials \(V_1, V_2 \) and \(V_x \) contributing to the full Green operator \(G \),

\[
G_x(z) = (G_{03}^R(z))^{-1} - V_x(z)^{-1}, \quad x = 1, 2, x,
\]

and observe that the following relations hold:

\[
\begin{align*}
V_1 G_i &= t_i G_{03}^R, \quad i = 1, 2, \\
V_x G_x &= (t_x + t_V) G_{03}^R.
\end{align*}
\]
Now we repeat Faddeev’s procedure and split the total operator T into three parts

$$T = T_1 + T_2 + T_3$$

where

$$T_1 = V_1 + V_1 G V,$$
$$T_2 = V_2 + V_2 G V,$$
$$T_3 = V_x + V_2 G V.$$

Using the resolvent identity

$$G = G_x + G_x V_x G_x,$$

where

$$T_i = F_i - F_i G V, \quad h = t_x + t_v.$$

We rewrite the last equations in the form

$$T_i = t_i + t_i G V_i, \quad i = 1, 2, 3,$$

and observe that the kernel of our Faddeev equations (14) becomes connected after a single iteration so that (14) could be solved in the standard way. The solutions T_i have the form

$$T_i = t_i + W_i,$$

where W_i is the fully connected part of T_i.

Inserting the last formula in Eq. (11) yields

$$\left[E - \tilde{v} R_3(k_1) - \tilde{v} R_3(k_2) + \Delta E_3(k_1, k_2) + \Delta E_3(k_1, k_2) \right] \chi(k_1, k_2)$$

$$= \lambda^2 \int d^3 q \left(q \right) d^3 k' d^3 \nu' d^3 m' \left< k_1, k_2 - q, q \right| G_{03}^R(E) \left[T_1(E) + T_2(E) + W_3(E) \right]$$

$$\cdot G_{03}^R(E) \left| k', \nu', m' \right> \chi(k, \nu, m') - (k_1 \leftrightarrow k_2).$$

The additional finite energy shift $\Delta E_3(k_1, k_2)$ is calculated in Appendix A.

The homogeneous Eq. (15) corresponds to an effective two-body problem. Its solutions can be calculated, at least numerically, by standard methods. In the next step Eq. (6) is solved for $\tilde{\beta}(k, l, m)$. Knowing $\beta(k, l, m)$ we obtain immediately the function $\gamma(l_1, l_2, m_1, m_2)$.

Appendix A

We demonstrate now that the term $G_{03}^R t_3 G_{03}^R$ produces an additional energy shift $\Delta E_3(k_1, k_2)$. To this end we calculate

$$I = \int d^3 q \left(q \right) d^3 k' d^3 \nu' d^3 m' d^3 k'' d^3 \nu'' d^3 m'' d^3 k''' d^3 \nu''' d^3 m'''$$

$$\cdot \left< k_1, k_2 - q, q \right| G_{03}^R(E) \left| k', \nu', m' \right> \left< k'', \nu'', m'' \right| T_3 + t_3 \chi(k, \nu, m') - (k_1 \leftrightarrow k_2).$$

We introduce the following notation

$$\left< k, l, m \right| G_{03}^R \left| k', \nu', m' \right> = \delta(k - k') \delta(l - \nu') \delta(m - m') g_0(E, k', \nu', m'),$$
$$\left< k, l, m \right| t_3(E) \left| k', \nu', m' \right> = \delta(k + l + m - k' - \nu' - m') \delta(k - l - m') \tau_x(E, k, l, m, m'),$$
$$\left< k, l, m \right| t_3(E) \left| k', \nu', m' \right> = \delta(k + l + m - k' - \nu' - m') \delta(k - k') \tau_y(E, k, l, m, m').$$

Inserting (A2) into (A1) and performing the integration over all delta functions we obtain

$$I = - \Delta E_3(k_1, k_2) \chi(k_1, k_2)$$

$$\Delta E_3(k_1, k_2) = \int d^3 q \left(q \right) d^3 \nu' g_0(E, k_1, k_2 - q, q) \tau_x(E, k_1, k_2 - q, q, k_1 - \nu') g_0(E, k_2, l, k_1 - l')$$

$$\cdot g_0(E, k_1, k_2 - l') + (k_1 \leftrightarrow k_2).$$