Thermoelectric Power of the Molten Systems PbCl$_2$ – MeCl
(Me = Li, Na, K, Rb, Cs)

Alberto Schiraldi and Elisabetta Pezzati

Centro di studio per la Termodynamica ed Elettrochimica dei sistemi salini fusi e solidi del CNR

c/o Istituto di Chimica-Fisica e di Elettrochimica dell’Università di Pavia (Italy)

(Z. Naturforsch. 32 a, 624–626 [1977]; received April 26, 1977)

Initial thermoelectric power determinations where carried out by means of Pb electrodes and Cl$_2$ electrodes thermocells on the molten system PbCl$_2$ – MeCl (Me = Li, Na, K, Rb, Cs).

Combinations of the results coming from the two kinds of thermocells allowed to verify Reinhold’s relation and to estimate the partial molar formation and excess entropies of PbCl$_2$.

Introduction

In a previous work, where molten ionic binaries with common cation and differently charged anions were considered1, unusual formal expressions for the ionic entropies were proposed: accordingly, the final expressions for the thermoelectric power were somewhat modified with respect to the cases where Temkin’s model of molten salts had been assumed.

In the present work the opposite case, i.e., molten binaries with common anion and differently charged cations, viz. PbCl$_2$ – MeCl (Me = Li, Na, K, Rb, Cs), was investigated by checking the initial thermal e.m.f. of two kinds of thermocells, with liquid Pb and with Cl$_2$ electrodes, respectively.

Though the data coming from the cells of the first type might be conveniently worked out on the basis of the simple Temkin’s model, Ref. 1 statements seemed more adequate to discuss combinations of the results of the two kinds of thermocells.

According to Ref. 1 the following expressions for the initial thermoelectric power were obtained:

\[F \varepsilon_j = \frac{1}{2} \left[S_{\text{Pb}(j)} - (6S_{\text{Pb}^+}) \right] + \frac{R}{2} \ln X_{\text{Pb}^+} - \sum j \frac{t_j}{T} \frac{Q_j^*}{T} \quad (I) \]

for Pb electrodes thermocells and

\[F \varepsilon_j' = -\frac{1}{2} S_{\text{Cl}(j)} + (6S_{\text{Cl}^-}) j - R \ln X_{\text{Cl}^-} - \sum j \frac{t_j}{T} \frac{Q_j^*}{T} \quad (II) \]

for Cl$_2$ electrodes thermocells, where $j = 1, 2, 3$ refers to pure molten PbCl$_2$, pure molten MeCl and molten mixture, respectively; $j = 1$ was assumed as the reference state in the definition of partial molar excess entropies, while the transport quantities, t_j and Q_j^*, were referred to the common ion Cl$^-$. It can be easily verified that Eqs. (I) and (II) allow Reinhold’s relation2 to be satisfied for both pure PbCl$_2$ and any mixture; furthermore, from Eqs. (I) and (II) and from the definition of the excess entropies given in Ref. 1 one may directly obtain:

\[2F \left[(\varepsilon_3 - \varepsilon_1) - (\varepsilon_3' - \varepsilon_1') \right] = R \ln \frac{27 N_1(1 + N_1)^2}{4 (2 + N_1)^3} - (S_{\text{PbCl}_2})_3 \quad (III) \]

where N_1 is the molar fraction of PbCl$_2$.

Experimental

The employed chemicals were BDH Analar Pb; Carlo Erba RP PbCl$_2$, LiCl, NaCl, KCl; Merck p.a. RbCl and CsCl; S.I.A. puriss. Cl$_2$.

Pb electrodes thermocells: a silica cup containing liquid Pb was suspended in each arm of a U-shaped silica cell filled with the molten salt which rested over the heavier molten metal; a Platinel thermocouple and the free end of a W wire (which was prevented from the contact with the salt by a narrow silica tube) could reach the metal-salt interface and dip into the liquid Pb.

Cl$_2$ electrodes thermocells: the arms of the cell were tightly closed by suitably designed silica covers which allowed:

a) a Platinel thermocouple to reach the interior of the cell, being contained in a silica tube sealed to the cover itself;

b) one end of a spectroscopical graphite bar (VEB Elektrokohle type 2) to be pressure joined to the cover and contacted by a tungsten wire working as the terminal;

Reprint requests to A. Schiraldi, Istituto di Chimica-Fisica e di Elettrochimica dell’Università, Viale Taramelli, I-27100 Pavia (Italy).
c) a Cl₂ flow (from the Cl₂ container to the pump) to be provided in each arm of the cell.

The graphite bars were previously maintained in Cl₂ atmosphere at 250 °C for 48 hours; a N₂ stream was let to pass through the cell for about 30 minutes before starting the Cl₂ flow, which was maintained for about 90 minutes; finally the pump suction and the Cl₂ supply were interrupted and the internal Cl₂ pressure was allowed to reach the ambient one.

The arrangement for applying ΔT between the arms was previously described³. The whole apparatus was set in a high capacity furnace.

In both investigations e.m.f. signals were detected by means of a Leeds & Northrup K3 potentiometer.

Results and Discussion

Direct experimental determinations, carried out on the cell

\[
\text{W} / \text{Pb} / \text{ionic melt} / \text{Pb} / \text{W}
\]

were slightly dependent on T; as for the pure molten PbCl₂, the results could be linearly fitted by the equation

\[
\varepsilon (\mu \text{V} \text{K}^{-1}) = 23.9 \times 10^{-3} t \left(\degree \text{C} \right) - 1.51.
\]

Thermoelectric power data of actual Pb electrodes thermocells were obtained by subtracting the Peltier coefficient of the couple W/Pb (reported in ⁴) from the directly detected values.

The values at T = 1000 K for all the investigated systems are shown in Figure 1.

Due to the low order of magnitude of these data no detailed discussion about them could be reasonably attempted.

Conversely, Cl₂ electrodes thermocells gave values lying around 500 μV K⁻¹, which could be worked out according the previously proposed procedure ¹. Data referring to pure PbCl₂ and pure alkali chlorides are close to the values reported by Fisher⁵, whereas a 100 μV K⁻¹ discrepancy was found with respect to ⁴. No relevant dependence on T was found both for pure salts and for mixtures.

\[\begin{array}{|c|c|c|c|c|c|}
\hline
N_{\text{PbCl}_2} & \text{PbCl}_2 + \text{LiCl} & \text{PbCl}_2 + \text{NaCl} & \text{PbCl}_2 + \text{KCl} & \text{PbCl}_2 + \text{CsCl} \\
\hline
0.00 & -534 & -483 & -504 & -533 \\
0.25 & -500 & -480 & -440 & -470 \\
0.50 & -536 & -491 & -450 & -470 \\
0.75 & -540 & -540 & -495 & -530 \\
1.00 & -570 & -570 & -570 & -570 \\
\hline
\end{array}\]

Tab. 1. Thermoelectric power values in μV degree⁻¹ at T = 1000 K for Cl₂ electrodes thermocells; "a": this value has been obtained by extrapolating the behaviour at \(T > T_{\text{fusion}} \).
Deviations from ideality did not allow to recognize any critical composition range, i.e., the formation of complex ions.

Combinations of the data coming from the two kinds of thermocells according to Reinhold's relation and to Eq. (III) gave the results reported in Table 2 which allow to verify that:

a) as for PbCl₂, Reinhold's relation is quite satisfactory: from these determinations we obtained at $T = 1000 \text{ K}$ the value -0.56 mV K^{-1} which is close to the literature data $[-0.60 \text{ mV K}^{-1}$ (see 6) coming from formation cells and -0.58 mV K^{-1} coming from thermoelectric determinations 5];

b) as for the general trend of $(S_{\text{PbCl}_2})_3$ and $(S_{\text{PbCl}_2})_{\text{as}}$ versus the composition (see Table 2) a satisfactory qualitative agreement with Markov's results 7 on formation cells was observed, differences being probably due to the different range of the investigated temperatures.

<table>
<thead>
<tr>
<th>N_{PbCl_2}</th>
<th>$\text{PbCl}_2 + \text{LiCl}$</th>
<th>$\text{PbCl}_2 + \text{NaCl}$</th>
<th>$\text{PbCl}_2 + \text{KCl}$</th>
<th>$\text{PbCl}_2 + \text{CsCl}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>-26 0.0</td>
<td>-26 0.0</td>
<td>-26 0.0</td>
<td>-26 0.0</td>
</tr>
<tr>
<td>0.75</td>
<td>-24 1.4</td>
<td>-24 1.1</td>
<td>-20 2.7</td>
<td>-25 0.2</td>
</tr>
<tr>
<td>0.50</td>
<td>-24 1.7</td>
<td>-21 3.8</td>
<td>-20.5 4.6</td>
<td>-21 3.2</td>
</tr>
<tr>
<td>0.25</td>
<td>-20 3.4</td>
<td>-19 3.7</td>
<td>-18 5.0</td>
<td>-20 2.9</td>
</tr>
</tbody>
</table>

Tab. 2. Every section of the table reports formation and excess entropies in the first and second column, respectively, for PbCl₂. Values are in e.u. and refer to $T = 1000 \text{ K}$.