Depolarization of NaD$_2$ Fluorescence under Pulsed Laser Excitation
V. Kroop and W. Behmenburg *

Physikalisches Institut der Universität Düsseldorf

(Z. Naturforsch. 31 a, 707 – 710 [1976] ; received April 21, 1976)

The intensity and polarization state of the NaD$_2$-fluorescence (33P$_{3/2}
ightarrow 3^5S_{1/2}$, λ 5890 Å) from a cell containing pure Na vapor, selectively excited by a flash lamp pumped dye laser was investigated. Measurements were performed both for excitation with π- and σ-light of spectral density ranging between 10^{-23} and 10^{-17} Ws$^{-2}$ cm$^{-3}$ and with Na number densities between 2.8×10^9 and 4.0×10^{10} cm$^{-3}$. The results are interpreted in terms of population of the 2P$_{3/2}$ state and of hyperfine and Zeeman pumping of the 5S$_{1/2}$ substates. The values for the degree of linear polarization measured at the smallest excitation densities and Na pressures agree well with theoretical values.

1. Introduction

The study of resonance fluorescence of gases or gas mixtures yields many informations on atomic structure as well as on interactions between atoms1 or with the radiation field. In particular, if the exciting radiation is polarized, processes like collisional depolarization or transfer of polarization may be investigated2. With a dye laser as exciting light source it has now become possible to study collisions in atoms with highly excited or metastable states by stepwise or two photon excitation3. Also, using pulsed excitation, the time dependence of collisional energy transfer may be examined4. Finally, in principle not only total but also differential cross-sections of all kinds of collision processes may be investigated. However, the use of laser sources for these purposes requires at first consideration of effects of high radiation fields on the intensity and polarization state of the fluorescence radiation. This will be the topic of the paper presented.

In the following we report on fluorescence experiments using a pulsed dye laser for excitation. The Na transition 3^3P$_{3/2}
ightarrow 3^5S_{1/2}$ (NaD$_2$, λ 5890 Å) was investigated at pure Na vapour in a resonance cell with number densities between 2.8×10^9 and 4.0×10^{10} cm$^{-3}$. The fluorescence was excited either with π or σ-polarized light of spectral densities varying between 10^{-23} and 10^{-17} Ws$^{-2}$ cm$^{-3}$. It turned out that the degree of polarization of the fluorescence radiation is strongly influenced both by hyperfine- and Zeeman-pumping of ground state sublevels and the finite length of the exciting laser pulse.

Reprint requests to Dr. W. Behmenburg, Physikalisches Institut der Universität Düsseldorf, Universitätsstraße 1, D-4000 Düsseldorf.
2.2. Fluorescence Excitation

For the excitation of fluorescence a commercial flash lamp dye laser was used with Rhodamin 6G as a dye. The energy of the laser light pulse was measured by means of a thermopile; typical values at 6000 Å without spectral narrowing were 10 mJ, corresponding to 10 kW during the pulse length of \(\approx 1 \mu s \). Reduction of the spectral width of the laser emission was achieved by means of an interference filter combined with a Fabry-Perot etalon. The halfwidths were at most \(\approx 0.05 \) Å.

Tuning of the laser line frequency was achieved by tilting the filter (course tuning) and/or etalon (fine tuning) relative to the resonator axis. Course tuning it into the \(D_2 \) atomic resonance was effected by comparing visually its position relative to that of the \(D_2 \) line from a Na spectral lamp (not shown in the figure) on a glass plate in the focal plane of a grating spectrograph. Fine tuning was obtained by observing photoelectrically the maximum fluorescence intensity in the line center.

As linear polarizer and analyser polaroid sheets were used. For excitation with \(o \)-light in addition a \(\lambda/4 \) mica plate was inserted into the exciting laser beam. The polarizing properties of sheets and plate under the action of the unweakened laser light beam were carefully tested. It turned out that they do not differ from those obtained with the light of a Na spectral lamp. In both cases it was found that to the \(o \)-light leaving the circular polarizer an amount of \(\approx 10\% \) \(t \)-light was admixed.

The intensity variation of the exciting beam over 5 orders of magnitude was achieved using Schott neutral transmission filters of known degree of transmission. The latter was measured by means of the laser beam actually used for fluorescence excitation.

2.3. Fluorescence Observation

Measurement of the fluorescence light pulses was performed photoelectrically using an EMI photomultiplier 9783/B. Time integration of each pulse was effected by means of an OEI operation amplifier with a time constant much larger than the pulse length. The integral value was digitally displayed on a peak hold meter and stored on a punch tape.

* quotation by the manufacturer CARL ZEISS, Oberkochen 1972.

Averages over 20 shots were then computed; standard deviations from the average values obtained were typically \(\pm 2\% \).

Since the region of linearity of the peak hold meter reading covered only one order of magnitude, calibrated neutral filters were applied for reduction of the fluorescence radiation. By this method linearity between reading and fluorescence intensity could be established over the total range of investigation.

The statistical errors, together with the uncertainties introduced by using filters lead to a total error of the fluorescence intensity measurement of \(\pm 20\% \).

The contribution of stray light from cell and oven walls to the fluorescence signal was measured by frequency shifting the laser line sufficiently away from the \(D_2 \) resonance. At small excitation intensities the stray light was negligibly small, at the highest intensities and smallest vapour pressures it amounted to \(\approx 20\% \) of the fluorescence signal.

In order to avoid magnetic fields the measurements were performed during the heating free period (\(\approx 1 \) min) of the electrical oven heating. The earth magnetic field was not compensated for, since its depolarizing effect was considered to be negligibly small compared to the error bounds of the observed polarization values.

2.4. Polarization Degree

For the determination of the degree of linear polarization \(P \) the fluorescence signal was registered in the \(z \)- and \(x \)-position of the analyser. The registration in the two positions was performed alternatingly from pulse to pulse; thus possible long run shifts of the laser output power during \(2 \times 20 \) shots could be eliminated. Errors in \(P \) ranged between 3\% at large and 15\% at small excitation densities.

3. Results and their Interpretation

The interpretation of the data requires the knowledge of absolute values of the spectral density \(u_r \) of the fluorescence exciting radiation produced by the laser beam inside the cell. From the energy \(E \) of the beam integrated over all angles and frequencies \(u_r \) is obtained using the formula

\[u_r = \frac{E}{F \Delta t c \Delta \nu} \]

with \(F = \text{laser beam crosssection} = 0.2 \pm 0.04 \text{ cm}^2 \), \(\Delta t = \text{laser pulse length} \approx 1 \mu s \), \(c = \text{light velocity} \),
$\Delta \nu$ spectral width of laser line $\approx 4 \times 10^9 \text{s}^{-1}$. With a relative error of $\pm 10\%$ in the E-measurement, together with the uncertainties in the quotations for the values of $\Delta \nu$ and Δt, the overall error of u_ν may be estimated to about 50%.

3.1. Fluorescence Excitation Function

Figure 2: With increasing excitation density u_ν, the fluorescence intensity I_F is observed to increase first and then to reach a constant value. This behaviour clearly reflects the dependence of the population of the $3^2P_{3/2}$ state on u_ν, which at sufficiently large u_ν saturates: the calculated relative number density $N_{3/2}/N_0$ of $^2P_{3/2}$ state atoms as function of u_ν coincides with the observed $I_F(u_\nu)$-function within the error limits.

![Fig. 2. Excitation function of NaD$_2$ fluorescence. □ Excitation with D$_2\sigma_+$-light; ○ excitation with D$_2\sigma_+\text{-light.} -$ calculated function $N_{3/2}(u_\nu)/N_0$. The observed fluorescence intensity values were normalized to the saturation value of $N_{3/2}(u_\nu)/N_0$.](image1)

3.2. Polarization Function

3.2.1. Excitation by σ-light

Figure 3: At sufficiently small u_ν, the observed polarization degree P remains constant. At larger u_ν, it starts to increase and, for sufficiently small Na number densities N, saturates at very high u_ν. At given u_ν, P reduces with N; for the highest N the observed $P(u_\nu)$-function passes a maximum at very high u_ν.

The strong increase of P observed at intermediate u_ν may be interpreted in terms of optical pumping of the hyperfine- and Zeeman sublevels of the $3^2S_{1/2}$ state: From the hyperfine and Zeeman structure of the transition $3^2S_{1/2} \rightarrow 3^2P_{3/2}$, together with the selection rules it follows, that the occupation of the $F=2$, $M_F=\pm 2$ substate of the $3^2S_{1/2}$ state and thus the degree of circular polarization of the fluorescence light will increase with u_ν.

A more quantitative explanation of the observed $P(u_\nu)$-function is possible, if in addition one takes into account the limited time of exposure of the atoms to the pump light due to the finite length of the exciting light pulse. For this purpose we estimate the number Z of pumping cycles during the pulse length Δt as function of u_ν. $Z(u_\nu)$ is roughly given by

$$Z(u_\nu) = \frac{\Delta t}{[t_0(u_\nu) + \tau]}$$

where $\tau = \text{mean life time for spontaneous decay of the upper state}$, $t_0 = \text{mean life time of the ground state related to} u_\nu$, by

$$\frac{1}{t_0} = B u_\nu = \frac{1}{8 \pi h} \frac{\lambda_0}{\tau} \frac{1}{u_\nu}$$

where B is the Einstein absorption coefficient and λ_0 the wavelength of the transition. With $\tau = 1.6 \times 10^{-8} \text{s}$ ** and $\lambda_0=5890 \text{Å}$ one obtains $B = 8.1 \times 10^{26} \text{cm}^3 \text{W}^{-1} \text{s}^{-3}$.

Comparison of $Z(u_\nu)$ with the observed polarization function shows that P starts to increase if the number of pumping cycles during the pulse duration becomes larger than one. On the other hand, P
saturates at large u_v, when Z no longer increases because stimulated emission does not contribute to pumping.

At small u_v and small N the observed P-value of 0.12 ± 0.015 agrees well with the theoretical value $81/773 \approx 0.105$, obtained under the following assumptions: broad line excitation, equal population of all ground state Zeeman levels, no collisions. At large u_v, the measured P is considerably smaller than the theoretical value unity. This value would be expected after sufficiently long pumping, when all ground state atoms occupy the $F = 2$, $M_F = 2$ level. It may be concluded, that the lower limit of the pumping time is comparably or larger than 10^{-6} s, the duration of the light pulse.

The observed reduction of P with increasing Na number density has been observed already by other authors 7^-9. It cannot be explained in terms of collisions since the crosssections derived from the experimental data ($\approx 10^{-7}$ cm2) are by several orders of magnitude larger than theoretical values ($\approx 10^{-11}$ cm2). Instead, it has been proposed to interpret it as due to radiation diffusion 10: Indeed, the optical depth $k_0 l$ of the fluorescent layer ($l \approx 1$ cm) in the line center is about 3×10^{-11} for the largest Na density $***$, so that reabsorption is then no longer negligible.

On the other hand, the maximum in the $P(u_v)$-function, observed at the highest N, cannot easily be understood in terms of radiation diffusion, since this effect should in first order be independent of the radiation field density. More experimental data are clearly necessary before an analysis of this point can be offered.

3.2.2. Excitation by π-light

Figure 4: As in the case of σ-excitation one observes an increase of P with u_v, however much smaller. This may again be understood in terms of

- ** value from Mitchell, Zemansky, I.e.
- *** value obtained from $k_0 = 2N \lambda_0/\Delta \lambda_D$, with r_0 classical electron radius, $\Delta \lambda_D$ = Doppler width of the NaD$_2$ line $\approx 0.02 \AA$, f = oscillator strength = 0.7.

2. M. Elbel and W. Schneider, Z. Physik 241, 244 [1971].