Fourier Transform NMR Studies of 95Mo and 97Mo
W. D. Kautt, H. Krüger, O. Lutz, H. Maier, and A. Nolle
Physikalisches Institut der Universität Tübingen, Germany

95Mo and 97Mo Fourier transform NMR studies of several alkali molybdate solutions in H$_2$O and D$_2$O are reported. The Larmor frequency of the molybdenum nuclides is remarkably dependent on the solute and the solvent.

In potassium molybdate the chemical shifts of 39K were observed. The ratio of the Larmor frequencies of 95Mo and 39K was measured with high accuracy in a 2.6 molal solution of K$_2$MoO$_4$ in H$_2$O. From this value a nuclear magnetic moment of 95Mo and 97Mo in the molybdate ion was derived using the concentration dependencies of the Larmor frequencies of 39K and 95Mo and the ratio of the Larmor frequencies of 97Mo and 95Mo.

In solid Ag$_2$MoO$_4$ and metallic molybdenum the 95Mo and 97Mo NMR signals were detected; line widths and shifts are given.

I. Introduction

Systematic NMR investigations of chemical shifts for the elements chromium and tungsten have been described. Shifts of several thousand ppm have been observed for these two elements. In this paper systematic investigations of molybdenum, the remaining element of the VIb group, are reported.

The element molybdenum has 7 stable isotopes, but only the isotopes 95Mo and 97Mo have a non-zero spin of $I = 5/2$. The natural abundance of 95Mo is 15.8% and that of 97Mo is 9.6%. In a 1 molal solution of K$_2$MoO$_4$ in H$_2$O the relative sensitivity is about 4.6 \times 10$^{-6}$ and 3.0 \times 10$^{-6}$ compared with the sensitivity of the proton in the same sample and in the same magnetic field. The magnetic moment of 97Mo is known to be about 2% larger than that of 95Mo.

Some NMR investigations indicate that the quadrupole moments of the two isotopes are very different. Results of nuclear spin relaxation measurements in molybdenum metal yield an estimate of the quadrupole moment of 97Mo of $Q(97\text{Mo}) = 1.1(0.2) \times 10^{-24}$ cm2 (see 7), whereas an analysis of the ground state hyperfine structure yields $Q(95\text{Mo}) = -0.019(12) \times 10^{-24}$ cm2 and $Q(97\text{Mo}) = 0.102(39) \times 10^{-24}$ cm2 (see 8). In spite of these disagreements it seems that 95Mo has a relatively small quadrupole moment, and because of this fact these measurements of 95Mo in some less symmetrical complexes should be also successful.

In Ref. 9 a value of the ratio of the Larmor frequencies of 95Mo and 97Mo was determined in order to evaluate the hyperfine structure anomaly of molybdenum with the known ratio of the hyperfine structure constants of the two isotopes in the ground state. The dependence of the relaxation rates of both molybdenum isotopes on the pH value is reported and an analysis of the chemical kinetics in aqueous solutions of Na$_2$MoO$_4$ is given. The indirect spin-spin coupling constant $J(17\text{O}-95\text{Mo})$ has been measured in a Na$_2$MoO$_4$ solution (enriched in 17O) by 17O NMR.

Further, a measurement of molybdenum signals in sodium molybdate is known, and investigations in metallic samples are reported.

In this paper chemical shifts and linewidths of 95Mo in diverse alkali molybdate solutions in H$_2$O and D$_2$O are reported. Solutions of Na$_2$MoO$_4$ or K$_2$MoO$_4$ are proposed as reference standards for other molybdenum NMR investigations. Molybdenum resonances have been observed in solid matter, too. Further the ratio of the Larmor frequencies $\nu(95\text{Mo})/\nu(39\text{K})$ has been measured in a solution of K$_2$MoO$_4$ in water. With these results a value of the magnetic moment of 95Mo and, the ratio $\nu(95\text{Mo})/\nu(97\text{Mo})$ being known, that of 97Mo can be given in the molybdate ion surrounded only by water molecules.

With the measurement of the 95Mo signal in a 5 millimolar K$_2$MoO$_4$ solution it has been shown that even in low concentrated solutions of molybdenum, for instance in some less soluble molybdenum complexes, NMR investigations are possible if the lines are not too broad.

Reprint requests to Prof. Dr. O. Lutz, Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle, D-7400 Tübingen.
II. Experimental

The NMR measurements were performed with a commercial multinuclei Bruker pulse spectrometer SXP 4—100 in a magnetic field of 2.11 T produced by a Bruker high resolution 15" magnet system. The magnetic field was externally stabilized by the Bruker B-SN 15 NMR stabilizer. The free induction decays of ^{95}Mo, ^{97}Mo and of ^{39}K were accumulated and Fourier transformed by a Bruker BNC 12 computer.

The Larmor frequency of ^{95}Mo was approximately 5.8654 MHz, that one of ^{97}Mo 5.9887 MHz and that of ^{39}K 4.1999 MHz. All these Larmor frequencies can be observed with the described spectrometer merely by retuning.

This was achieved by addition of the appropriate base. The pH values were measured with the glass electrode HA 405/M8 of Ingold and a Knick high sensitive voltage meter.

A signal-to-noise ratio of 150 was achieved for ^{95}Mo within 30 sec of measuring time and a signal-to-noise ratio of 120 for ^{39}K within 300 sec; the linewidths were about 1 Hz for ^{95}Mo and 12 Hz for ^{39}K in the reference solution. A typical absorption curve of ^{95}Mo is given in Figure 1.

III. Results and Discussion

a) Chemical Shifts of ^{95}Mo in Solutions of Alkali Molybdates in H_2O

The dependence of the Larmor frequency of ^{95}Mo on the concentration of aqueous solutions of the alkali molybdates Li_2MoO_4, Na_2MoO_4, K_2MoO_4, and of $(\text{NH}_4)_2\text{MoO}_4$ has been measured. The results are given in Figure 2.

![Fig. 1. Absorption signal of ^{95}Mo in a 2.6 molal solution of K_2MoO_4 in H_2O. Larmor frequency 5.865 407 MHz; linewidth 1 Hz; plotted spectrum width 50 Hz; pulse repetition frequency 0.3 Hz; accumulation time 30 sec; number of pulses 10; rotating cylindrical sample 10 mm outer diameter; sample volume 1 ml.](image)

![Fig. 2. Chemical shifts of ^{95}Mo in diverse molybdate solutions in H_2O as a function of concentration. Cylindrical samples of 10 mm outer diameter were used. The shifts are referred to the Larmor frequency of ^{95}Mo in the molybdate ion surrounded only by H_2O molecules. The pH value of all solutions was between 10.0 and 13.0. No bulk susceptibility corrections were made. The size of the symbols is adjusted to the measuring errors.](image)
For solutions of Li$_2$MoO$_4$ and (NH$_4$)$_2$MoO$_4$ one gets a shift to lower frequency if the concentration of the solutions is increased, whereas for solutions of Na$_2$MoO$_4$ and K$_2$MoO$_4$ one gets a shift to higher frequency. Further the amount of the shift is greater for Li$_2$MoO$_4$ and (NH$_4$)$_2$MoO$_4$ solutions than for the corresponding Na$_2$MoO$_4$ or K$_2$MoO$_4$ solutions. Because of this fact Na$_2$MoO$_4$ or K$_2$MoO$_4$ solutions can be used as reference standards for other NMR investigations of molybdenum.

This behaviour of the molybdenum signals in alkali molybdate solutions is quite different from the concentration dependence found for 53Cr in alkali chromate solutions, where the Larmor frequency decreases for all solutions if the concentration is increased. Further the amount of the shift of 53Cr in chromate solutions is increasing in the sequence of the cations: Na$^+$, K$^+$, Rb$^+$, NH$_4^+$ and Cs$^+$. In alkali permanganate solutions in water one finds similar results for 55Mn as for 53Cr.

In Fig. 3 the dependence of the chemical shift of 95Mo on the pH value is given for (NH$_4$)$_2$MoO$_4$. The shifts are referenced to the extrapolated frequency of the infinite dilution resonance of 95Mo in the molybdate ion in H$_2$O.

The Larmor frequency in the solvent D$_2$O is lower than in the solvent H$_2$O. This is the effect which is normally observed. The difference of the Larmor frequency depends only a little on the concentrations of the solutions and on the cations. One
gets for infinitely diluted solutions:
\[\frac{\nu(\text{Mo}^{95} \text{ in D}_2\text{O})}{\nu(\text{Mo}^{95} \text{ in H}_2\text{O})} - 1 = - (1.0 \pm 0.2) \text{ ppm.} \]

The solvent isotope effect of \(\text{Cr}^{53} \) in the \(\text{CrO}_4^{2-} \) ion is \(- (1.3 \pm 0.3) \text{ ppm} \).

One has almost the same value for \(\text{Cr}^{53} \) and \(\text{Mo}^{95} \). The solvent isotope effect of \(\text{Mn}^{55} \) in the \(\text{MnO}_4^- \) ion is only a little bit smaller.

c) \(^{95}\text{Mo} \) NMR Signal at low Concentration

In biological systems only concentrations of some millimoles solute/kg solvent are usually achievable. From the signal-to-noise ratio at higher concentra-

\[\text{linewidth of } ^{97}\text{Mo in aqueous solutions of alkali molybdates is very small, it is easier to study the linewidths of } ^{97}\text{Mo, which are about a factor 130 broader in aqueous solutions} \]

\[\text{The linewidth of } ^{97}\text{Mo increases from about 35 Hz for low concentrations to 65 Hz for the 2.6 molal solution of } \text{K}_2\text{MoO}_4 \text{ in water. In Fig. 3 not only the dependence of the chemical shift of } ^{95}\text{Mo} \text{ on the } p_H \text{ value in a 1.3 molal ammonium molybdate solution is given, but also the dependence of the linewidth of } ^{95}\text{Mo}. \text{In the } p_H \text{ range from 7.5 to 10.4 no dependence of the linewidth is observable; this linewidth is partly due to the inhomogeneity of the magnetic field. For lower } p_H \text{ values, however, one obtains linewidths growing synchronously to the chemical shifts.} \]

Vold and Vold\(^5\) have measured the relaxation rates in a solution of \(\text{Na}_2\text{MoO}_4 \) and \(\text{NaCl} \). They found strongly growing linewidths, too, but in the \(p_H \) range from 7 to 8.

c) Molybdenum Signals in Solid Samples

The NMR signals of \(^{95}\text{Mo} \) and \(^{97}\text{Mo} \) have been measured in silver molybdate powder. The results are given in Table 1. The NMR signals of both molybdenum isotopes have already been measured in \(\text{Na}_2\text{MoO}_4 \) powder by Lynch and Segel\(^12\). They got much broader lines. It seems that \(\text{Na}_2\text{MoO}_4 \) is not a perfectly cubic crystal.

Table 1. Results of the NMR investigations of \(^{95}\text{Mo} \) and \(^{97}\text{Mo} \) in solid samples. The chemical shifts are given relative to the corresponding molybdenum signal in the \(\text{MoO}_4^{2-} \) ion at infinite dilution in \(\text{H}_2\text{O} \).

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Sample</th>
<th>Measuring time</th>
<th>Signal-to-noise ratio</th>
<th>Chemical shift</th>
<th>Line-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{95}\text{Mo})</td>
<td>(\text{Ag}_2\text{MoO}_4) powder</td>
<td>8 min</td>
<td>15</td>
<td>82 (2) ppm</td>
<td>80 Hz</td>
</tr>
<tr>
<td>(^{97}\text{Mo})</td>
<td>(\text{Ag}_2\text{MoO}_4) powder</td>
<td>2 min</td>
<td>15</td>
<td>33 (2) ppm</td>
<td>100 Hz</td>
</tr>
<tr>
<td>(^{95}\text{Mo})</td>
<td>metallic powder</td>
<td>20 min</td>
<td>30</td>
<td>0.5848 (5) %</td>
<td>500 Hz</td>
</tr>
<tr>
<td>(^{97}\text{Mo})</td>
<td>metallic powder</td>
<td>180 min</td>
<td>10</td>
<td>0.5835 (20) %</td>
<td>700 Hz</td>
</tr>
</tbody>
</table>

* We like to thank Dr. J. Kaufmann for the solid state samples.
It is obvious that in solid molybdate the line-widths of the two isotopes are no longer as much different as in molybdate solutions. The different measuring times of the two isotopes are due to the different relaxation times T_1, which have been estimated to be about 1 sec for 95Mo and 40 msec for 97Mo.

The results of measurements in metallic molybdenum at room temperature are given in Table 1.

Because of the limited precision of the value of the Knight shift of 97Mo one cannot decide whether there is an isotopic effect on the Knight shift for the two molybdenum isotopes or not, as it has been found at other isotopes e.g. for silver. Other measurements of the Knight shift of both molybdenum isotopes are known, too. Aksenov found 0.582(5) % for 95Mo and 0.586(5) % for 97Mo. As in the measurements which are reported in this paper, Aksenov got a much better signal for the 97Mo than for the 95Mo isotope. Rowland gives the same value of 0.584 % without any error limitations for both isotopes; he found line-widths of 220 Hz and 250 Hz for 95Mo and 97Mo. Narath and Alderman have measured relaxation times of both molybdenum isotopes in the temperature range 1 - 4 K and the Knight shift between 4 and 300 K. At 300 K they obtained the same value as Aksenov and at 4 K they got a value of 0.57%. In a later work Narath et al. gave another value of the Knight shift at 4 K of 0.610(5) % for both molybdenum isotopes.

f) Nuclear Magnetic Moment of 95Mo and 97Mo

In a 2.6 molal solution of K$_2$MoO$_4$ in H$_2$O 60 measurements of the ratio of the Larmor frequencies $\nu(95\text{Mo})/\nu(97\text{Mo})$ were carried out on 4 different days. The result is:

$$\nu(95\text{Mo})/\nu(97\text{Mo}) = 1.3965729(3).$$

The error is two times the standard deviation. With the chemical shift $\delta = \nu(95\text{Mo})$ in 2.6 molal K$_2$MoO$_4$ in H$_2$O $- \nu(95\text{Mo})$ in infinitely diluted K$_2$MoO$_4$ solution in H$_2$O $= 12(1)$ Hz, given in Fig. 2, and the corresponding chemical shift $\nu(97\text{K})$ in 2.6 molal K$_2$MoO$_4$ solution in H$_2$O $- \nu(97\text{K})$ in infinitely diluted K$_2$MoO$_4$ solution in H$_2$O $= 1.8(1.0)$ Hz, which has been determined, too, the above ratio can be extrapolated to an infinitely diluted K$_2$MoO$_4$ solution in H$_2$O:

$$[\nu(95\text{Mo})/\nu(97\text{K})]_{\text{extrapol.}} = 1.3965706(6).$$

The additional error is due to the extrapolation to zero concentration.

With the ratio

$$[\nu(97\text{K})/\nu(92\text{H})]_{\text{extrapol.}} = 0.30398485(9),$$

given in 23 and the ratio of Smaller 24 $\nu(92\text{H})/\nu(91\text{H}) = 0.153506083(60)$ one gets the ratio:

$$[\nu(95\text{Mo})/\nu(91\text{H})]_{\text{extrapol.}} = 0.065168904(43).$$

With the value of the magnetic moment of the proton in H$_2$O: $\mu_p = 2.7927740(11) \mu_N$ 25 and the value of the spin 5/2 \hbar one can derive a magnetic moment of 95Mo in the Mo$_4^{2+}$ ion of:

$$[\mu(95\text{Mo in MoO}_4^{2+} \text{ in H}_2\text{O}) = 0.9101010(7) \mu_N].$$

As 97Mo has the same spin as 95Mo, one gets the corresponding value of the magnetic moment of 97Mo by multiplying the above value with the ratio of the Larmor frequencies:

$$[\nu(97\text{Mo})]/[\nu(95\text{Mo})] = 1.020986(1),$$

which has been given in 9:

$$[\mu(97\text{Mo in MoO}_4^{2+} \text{ in H}_2\text{O})] = 0.9291076(10) \mu_N].$$

These magnetic moments are not corrected for the diamagnetism due to the electrons.

The only known value of the magnetic moments of 95Mo and 97Mo has been reported by Proctor and Yu 3. The relative accuracy of these magnetic moments is about 2 \times 10^{-4}. But nevertheless these values do not agree with those given in this work. This is perhaps caused by the fact that Proctor and Yu did not take into account the chemical shift of 14N in the HNO$_3$ which they used as reference solution.

Acknowledgement

We thank Dr. J. Kaufmann, Dr. P. Kroneck, and Dr. A. Schwenk for helpful discussions. We like to thank the Deutsche Forschungsgemeinschaft for financial support.
W. D. Kautt et al. • Fourier Transform NMR Studies of 95Mo and 97Mo

2 J. Banck and A. Schwenk, Z. Physik B 30, 75 [1975].
4 J. Kaufmann, Z. Physik 182, 217 [1964].
16 to be published.
18 A. Schwenk, Z. Physik 213, 482 [1968].
24 B. Smaller, Phys. Rev. 83, 812 [1951].