An Improved Formula for the Radiative Tail in Electron Scattering

E. Borie

Swiss Institute for Nuclear Research, 5234 Villigen, Switzerland

An exact formula for the radiative tail in electron scattering is presented in a form more convenient for numerical computation than previous versions.

One of the main problems in the analysis of deep inelastic electron scattering is the presence of large radiative tails, which constitute a substantial background and which must be subtracted from the observed cross section before the purely nuclear or hadronic cross section can be extracted.

Numerous calculations of these effects exist in the literature, the most complete of these being the reviews of Mo and Tsai, Tsai and Maximon. For further references see also the work of Berthot and Isabelle and ch. 7 of Ueberall's book. Exact formulas for the radiative tail have been given by Maximon and Isabelle (neglecting target recoil) and by Mo and Tsai. The latter have the exact result in terms of an integral over a photon angle in which the integral is rather sharply peaked at angles such that the photon is emitted parallel to either the incident or outgoing electron. It may be of some utility to experimentalists to separate the contribution of the peaks from the remainder of the radiative cross section in much the same way as was done by Maximon and Isabelle for potential scattering. We note here that neglect of the remainder amounts to the so-called peaking approximation. Once the separation is made, the dominant contribution to the radiative tail comes from the peaking terms. The background gives a significant (10—20%) correction but is given as an integral over a much smoother function than the full radiative cross section given in formula B.5 of Ref. 1, and it needs to be calculated somewhat less accurately than the full result. The separation is therefore convenient for numerical evaluation.

Our starting point will be formula B.5 of Reference 1. We begin here by reminding the reader of the notation used there and mentioning some useful kinematic identities.

Reprint requests to Dr. E. Borie, Institut für Theoretische Kernphysik, Universität Karlsruhe, D-7500 Karlsruhe.
and note that for
\[\theta_k \approx \theta_p, \quad q^2 \approx q_p^2, \quad \nu \approx [\omega_p \epsilon_s(1 - \cos \theta)]^{-1}, \]
\[\omega \approx \omega_p, \quad a \approx -b \approx \omega_p \epsilon_p \sin^2 \theta_p \]
while for
\[\theta_k \approx \theta, \quad q^2 \approx q^2, \quad \nu' \approx [\omega_j \epsilon_p(1 - \cos \theta)]^{-1}, \]
\[\omega \approx \omega_j, \quad a' \approx -b' = \omega_j \epsilon_j \sin^2 \theta_j \]

Next, in all terms involving \((a^2 - b^2)^{-1/2}\) add to and subtract from the numerators the corresponding quantities with \(\theta_k \approx \theta_p\) and similarly for the terms in \((a^2 - b^2)^{-1/2}\) with \(\theta_k \approx \theta_j\). The differences between exact and “peaked” integrand will be smooth while the first part can be integrated analytically, using the fact that

\[
\frac{d(\cos \theta_k)}{(a^2 - b^2)^{1/2}} = \frac{1}{\epsilon_p \omega_p} \ln \frac{4 \epsilon_p^2}{m^2},
\]
\[
\frac{d(\cos \theta_k)}{(a^2 - b^2)^{3/2}} = \frac{2}{\omega_j \epsilon_j \sin^2 \theta_j}
\]

We obtain

\[
\frac{d^2 \sigma}{d\Omega \, d\epsilon_p} = P + B
\]

where

\[
P = \frac{a^2}{\pi} M \epsilon_p \cos^2 \theta / 2 \left\{ \frac{\epsilon_p \epsilon_s}{\omega_p [M - \epsilon_p(1 - \cos \theta)]} q_s^4 \left[F(q_s^2) + \frac{2 G(q_s^2)}{M^2} \tan^2 \theta / 2 \right] + \frac{\epsilon_p \epsilon_s}{\omega_p [M + \epsilon_p(1 - \cos \theta)]} q_s^4 \right\}
\]

\[
\cdot \left(\frac{\epsilon_p^2 + (\epsilon_p + \omega_p)^2}{2 \epsilon_p^2} \ln \frac{4 \epsilon_p^2}{m^2} - \frac{\epsilon_p + \omega_p}{\epsilon_p} \right) \cdot \left[F(q_p^2) + \frac{2 G(q_p^2)}{M^2} \tan^2 \theta / 2 \right]
\]

where \(F\) and \(G\) are defined as in the nonradiative cross section

\[
\frac{d\sigma_{NR}(\epsilon_s, \epsilon_p, \theta)}{d\Omega \, d\epsilon_p} = \frac{a^2 \epsilon_p^2 \cos^2 \theta / 2}{4 \left[1 + \frac{\epsilon_s}{m} (1 - \cos \theta) \right]} \left(F(q_s^2) + \frac{2 \tan^2 \theta / 2}{M^2} G(q_s^2) \right).
\]

The quantity \(P\) corresponds to the peaking approximation and can be rewritten

\[
P = \frac{a}{\pi} \left\{ M + (\epsilon_s - \epsilon_p) (1 - \cos \theta) \right\} \frac{d\sigma_{NR}(\epsilon_s - \epsilon_p, \epsilon_p, \theta)}{d\Omega \, d\epsilon_p} + \frac{1}{\omega_p} \frac{d\sigma_{NR}(\epsilon_s, \epsilon_p + \omega_p, \theta)}{d\Omega \, d\epsilon_p}
\]

with

\[
t_s = \frac{1}{2} \left[1 + \frac{(\epsilon_s - \epsilon_p)^2}{\epsilon_s^2} \right] \ln \frac{4 \epsilon_s^2}{m^2} - \frac{\epsilon_s - \epsilon_p}{\epsilon_s}, \quad t_p = \frac{1}{2} \left[1 + \frac{(\epsilon_p + \omega_p)^2}{\epsilon_p^2} \right] \ln \frac{4 \epsilon_p^2}{m^2} - \frac{\epsilon_p + \omega_p}{\epsilon_p}
\]

Finally we have

\[
B = \frac{a^2}{2 \pi} \frac{M \epsilon_p}{\epsilon_s} \int d(\cos \theta_k) \left\{ \frac{\omega [2 G(q_s^2) / M^2 - F(q_s^2)]}{q_s^4 (u_0 - u) \cos \theta_k} + (2 \omega)^{-1} \frac{\epsilon_p^2 (\cos \theta_p - \cos \theta_k)^2}{M^2 q_s^4 (u_0 - u) \cos \theta_k} \right\}
\]

\[
+ \omega \frac{F(q_p^2)}{q_p^4 [M + \epsilon_p(1 - \cos \theta)]} \left[2 \epsilon_p \left(\frac{\epsilon_s \epsilon_p}{\omega_p} \right) (1 + \cos \theta) + \epsilon_s - \epsilon_p \right]
\]

\[
+ \frac{q_p^2 / 2 - s \cdot p + 2(\epsilon_s \epsilon_p + \omega \epsilon_s + \epsilon_p^2)}{M^2 q_p^4 (u_0 - u) \cos \theta_k} \left[\frac{2 \omega G(q_p^2)}{M^2 q_p^4 [M + \epsilon_p(1 - \cos \theta)]} \right] \left[2(\epsilon_s \epsilon_p + \omega \epsilon_s + \epsilon_p^2) \right] + \frac{2 \omega G(q_p^2)}{M^2 q_p^4 [M + \epsilon_p(1 - \cos \theta)]} \left[2 \epsilon_p \left(\frac{\epsilon_s \epsilon_p}{\omega_p} \right) (1 + \cos \theta) + \epsilon_s - \epsilon_p \right]
\]
$\frac{(2 \omega)^{-1}\left[\frac{\epsilon_s^2 (\cos \Theta_s - \cos \Theta_b)^2 + m^2 \sin^2 \Theta_s \sin^2 \Theta_b}{q^4(q_0 - u \cos \Theta_b)}\left(-2v s \cdot p [\epsilon_s \epsilon_p (1 + \cos \Theta) + (\epsilon_s - \epsilon_p) \omega] + s \cdot p - q_s^2/2 - 2(\epsilon_s \epsilon_p - \omega \epsilon_p + \epsilon_s^2)\right)\right] + \frac{\omega F(q_s^2)}{q_s^4}\left[\frac{M - \epsilon_p(1 - \cos \Theta)}{\omega_s}\left(2 \epsilon_s \left(\frac{\epsilon_s \epsilon_p}{\omega_s} (1 + \cos \Theta) + \epsilon_s - \epsilon_p\right) + s \cdot p - q_s^2/2 - 2(\epsilon_s \epsilon_p - \omega_s \epsilon_p + \epsilon_s^2)\right)\right] + \frac{M^2 q_s^4(u_0 - u \cos \Theta_b)}{\omega_s G(q_s^2)}\left[-2(s \cdot p)^2 v - s \cdot p + q_s^2/2\right] - \frac{M^2 q_s^4(M - \epsilon_p(1 - \cos \Theta))}{\omega_s G(q_s^2)}\left(2 \epsilon_s \left(s \cdot p - s \cdot p + q_s^2/2\right)\right)$.

The radiative tail corresponding to elastic scattering plus bremsstrahlung gives the most important contribution to the total correction at large energy loss. Further this contribution is least reliably given by the peaking approximation. Thus, for $M = M$, and elastic form factors, one must use $P + B$, calculated for elastic scattering. The dominant contribution comes from $F(q_s^2)$ since we can have $q_s^2 \ll q_s^2$. If necessary the form factors in the background term can be given by a simple model, such as that for the Fermi distribution.

The contributions to the radiative tail for inelastic scattering accompanied by bremsstrahlung are generally smaller than for the elastic tail, except quite near the corresponding inelastic peak. It is therefore safer to use the peaking approximation for these contributions, although the background terms can be included here also if desired.

The author wishes to thank Prof. F. Scheck for reading the manuscript.

1. L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 [1969].
2. Y. S. Tsai, SLAC-PUB-848 [1971].