55 Mn NMR Studies in Aqueous Permanganate Solutions

O. Lutz and W. Steinkilberg

Physikalisches Institut der Universität Tübingen

(Z. Naturforsch. 29 a, 1467 - 1470 [1974]; received July 12, 1974)

The NMR signals of the nuclei 55Mn and 2H have been investigated in aqueous solutions of permanganates. The concentration dependence of the NMR signals of 55Mn has been determined in potassium permanganate solutions in H$_2$O and D$_2$O and a large solvent isotope effect on the chemical shift of 55Mn has been established. The ratio of the Larmor frequencies of 55Mn relative to 2H has been measured with high accuracy. Using the concentration dependence, the ratio of the Larmor frequencies of 55Mn for infinite dilution relative to 2H in pure D$_2$O is given. From this ratio a magnetic moment for 55Mn in the permanganate ion has been derived.

I. Introduction

A useful choice of the reference compound for chemical shifts and Knight-shifts is always a problem in NMR spectroscopy, especially in the case of the transition elements. The best reference would be the bare nucleus or the free atom or ion. Unfortunately the magnetic moment of the bare nucleus is hardly to be measured, but for the free atom or ion there are some techniques to measure the magnetic moment with high accuracy1,2. Comparing these magnetic moments with those measured by the NMR method in a definite compound, the nuclear magnetic shielding constant can be evaluated3. With the shielding constant an atomic reference scale for all measured chemical shifts and Knight-shifts can be established3. An application of this method to manganese fails, because the nuclear magnetic moment of 55Mn has not been measured with sufficient accuracy by either of these methods by now. In the following we describe the determination of the nuclear magnetic moment of 55Mn for vanishing concentration of aqueous permanganate solutions by the NMR method4. Further, an investigation of the dependence of the Larmor frequency of 55Mn on the concentration of different permanganates in H$_2$O and D$_2$O was made, since the few given5,6 chemical shifts of 55Mn are referred to aqueous permanganate solutions and the Knight-shift is referred7 to one of the compounds given in Reference5.

II. Experimental

A frequency swept spectrometer which was described elsewhere8 was used. At the externally stabilized field9 of 1.807 Telsa the 55Mn has a Larmor frequency of approximately 19.087 MHz, and 2H of about 11.81 MHz. The chemical shifts were measured relative to an external standard by the sample exchange method. The chemical shift is given by $\delta = \nu_{\text{sample}} - \nu_{\text{refer.}}$, a positive value means a shift to higher frequency at constant field. Concentrations are given as the mole fraction, i.e. moles salt per moles solvent. Rotating spherical samples of 5 mm diameter have been used, the linewidths due to the inhomogeneity of the magnetic field are about 1 Hz. Appropriate conditions of modulation, radio frequency field and sweep rates are employed to prevent distortions of the signals of 55Mn and 2H which showed linewidths of some Hertz. The temperature was (298 ± 2) K.

As reference sample a solution of potassium permanganate in D$_2$O (mole fraction $f = 0.00516$) has been used. The signal-to-noise ratio for 55Mn is high enough for measuring solutions with low concentrations (down to mole fractions of 0.0004).

III. The Ratio of the Larmor Frequencies of 55Mn and 2H

The ratio of the Larmor frequencies $\nu(^{55}$Mn)/$\nu(^2$H) was measured in a solution of KMnO$_4$ and D$_2$O (99.75% deuterium) with a concentration of $f = 0.0051$. The Larmor frequencies were measured alternately in the same probe and sample at constant field only by varying the excitation frequency. 41 measurements of the ratio were carried out on different days. The result is $\nu(^{55}$Mn)/$\nu(^2$H) = 1.61486483(9) at (298 ± 2) K. The error is three times the rms error. The linewidths were 4 Hz for 55Mn and 2 Hz for 2H.

There are only two earlier measurements10,11 of ratios of Larmor frequencies which can not be compared with this work, since the Larmor frequencies...
of 55Mn are referred to 23Na (Ref. 10) and to 45Sc (Reference 11).

Since there is a dependence of the Larmor frequency on the concentration of the solution for both 55Mn and 2H, this dependence had to be studied for an extrapolation to vanishing concentration.

IV. Chemical Shifts

\textit{a) 55Mn in Aqueous Solutions of Permanganates}

Solutions of potassium and lithium permanganate have been used as reference samples.\(^5\)\(^6\). For the 35Cl-resonance a concentration dependent shift to lower frequency was found in aqueous perchlorate solutions, whereas for the 32S-resonance in sulfate solutions no shift was observable.\(^7\)\(^8\). Therefore the dependence of the Larmor frequency on the concentration of some permanganates has been investigated. The results are given in Figure 1. The shifts are referred to the Larmor frequency of 55Mn at infinite dilution of MnO$_4^-$ in H$_2$O. With increasing concentration, the shifts go to lower frequency. The shifts are relatively large compared with that of 35Cl in perchlorate solutions.\(^7\) The shifts increase with increasing atomic number for alkalis and earth alkalis.

\textit{b) Solvent Isotope Effect}

The Larmor frequency of a nucleus in aqueous solution usually depends on the isotopic composition of the water.\(^9\) The size of the solvent isotope effect ranges up to 31 ppm in the case of 207Pb and the shift goes usually to lower frequency.\(^10\) Two exceptions have recently been found.\(^3\)\(^11\). In Fig. 2 the results of the solvent isotope effect of 55Mn in potassium permanganate solutions in H$_2$O and D$_2$O are given. A surprisingly large effect is found for the permanganate ion, contrary to the case of 35Cl in perchlorate.\(^8\) The difference of the shielding of...
the ^{55}Mn between MnO_4^- in H_2O and D_2O is:

$$\sigma(\text{H}_2\text{O}) - \sigma(\text{D}_2\text{O}) = -(0.76 \pm 0.05) \text{ ppm}$$

c) ^2H-Resonance Shift

The Larmor frequency of ^2H is nearly linearly dependent on the concentration of the solutions of KMnO_4 in D_2O. The ^2H resonance shows a shift of $-(1.4 \pm 1.0) \text{ Hz}$ for the KMnO_4 solution used for the measurement of the ratio of the Larmor frequencies ($J = 0.0051$).

$$\nu(\text{H}) = 1.6148654(4) \text{ ppm}$$

The result is:

$$\mu(\text{KMnO}_4^- \text{ hydrated by D}_2\text{O}) = +3.4614464(22) \mu_N$$

The moment is affected by the uncertainty of the magnetic moment of the proton and is not corrected for the diamagnetic shielding due to the electrons.

A comparison of this magnetic moment with magnetic moments measured by the atomic beam magnetic resonance method or optical pumping technique on free manganese atoms or ions would yield the shielding constant for ^{55}Mn in the MnO_4^- ion. Such a shielding constant seems to be rather large since the chemical shift range for ^{55}Mn is about 3000 ppm5,6. But at the moment no magnetic moment measured by the mentioned methods on free Mn atoms or ions is known.

From ENDOR measurements on Mn$^{2+}$: CaWO_4, Mn$^{2+}$: ZnS and Mn$^{2+}$: CaO, Mims et al. 17 derived a weighted magnetic moment for ^{55}Mn of

$$\mu(\text{Mn}) = 3.4438(20) \mu_N$$

The difference between this value and the value given above is very large and is certainly partly due to the chemical shift of MnO_4^-. But it is uncertain, if the ENDOR value can be used for the calculation of the shielding constant with the same reliability as the magnetic moments derived from free atoms or ions. In the case of ^{153}Eu and ^{155}Gd, the magnetic moments measured by the atomic beam18,19 and the ENDOR20,21 method are also different. Therefore the measurement of $\mu(\text{Mn})$ on free atoms would also by very interesting for the decision wether the ENDOR method yields the “right” magnetic moment or not.

VI. Magnetic Moment of ^{55}Mn

From the ratio of the Larmor frequencies given in the last section, a nuclear magnetic moment can be derived, using $\nu(\text{H})/\nu(\text{H}) = 0.153506083(60)$ of Smaller13 and the uncorrected magnetic moment of the proton in water $\mu_p = 2.792709(17) \mu_N$ of Taylor et al.16

$$\nu(\text{MnO}_4^-) = 3.4438(20) \text{ ppm}$$

The additional error is due to the uncertainty of the extrapolation to zero concentration.

Acknowledgement

We thank Prof. Dr. H. Krüger for his support and Dr. D. Krug, Chemisches Institut der Universität Tübingen, for the kind support with some permanganates. We thank Dr. A. Schwenk for many helpful discussions.

7 J. Kaufmann and A. Schwenk, Z. Angew. Phys. 21, 527 [1966].
11 R. E. Sheriff and D. Williams, Phys. Rev. 82, 651 [1951].
15 B. Smaller, Phys. Rev. 83, 812 [1951].