Transport Processes in TII and in the AgI-TII-System

A. Schiraldi, A. Magistris, and E. Pezzati

Centro di studio per la termodinamica ed elettrochimica dei sistemi salini fusi e solidi del C.N.R.
c/o Istituto di Chimica-Fisica, Università di Pavia (Italy)

(Z. Naturforsch. 29 a, 782—785 [1974]; received March 7, 1974)

The transport properties of TII and of the system AgI—TII were investigated by measuring the electrical conductivity, \(\sigma \), and the electronic and ionic transport numbers.

A particularly high electronic conductivity was detected in \(\beta \)-TII, while the \(\alpha \) phase showed a predominant anionic contribution, as in TiCl and TiBr.

The intermediate compounds, AgTIL\(_2\) and AgTII\(_2\), are silver ion conductors, but they exhibit low \(\alpha \) values. A comparison with other poliiodides, with a high silver ion conductivity, is suggested on the basis of the crystal bond ionicity.

A number of physico-chemical properties of Tl and Ag halides were already studied and compared by Tubandt and Lorenz\(^1\) and by Friauf\(^2\). The similarity observed between these two families of salts, noticeably pronounced in the case of the iodides (which also exhibit the common feature of allotropic modifications affectable by mechanical pressure\(^3\)–\(^5\)) does not extend to the transport properties.

This is particularly true for AgI and TII, as proved by the transport measurements reported in the present paper.

Experimental

A pellet obtained by pressing the yellow \(\beta \)-TII powder (Fluka p.a.; impurities < 20 ppm) showed a reddish surface colour corresponding to a partial \(\beta \rightarrow \alpha \) transition and exhibited time dependent electrochemical properties; however, after two days annealing at 50°C, it turned to the yellow colour and to the stable electrochemical properties of \(\beta \)-TII. Therefore specimens were always annealed before use.

The electrical conductivity was measured on pellets obtained by pressing TII powder between two silver powder layers. A recorder connected to an autobalancing Wayne Kerr bridge, mod. B 331, allowed to follow the signal change over the annealing period until stabilization and then to detect the conductivity behaviour with increasing temperature.

The electronic contribution was determined by suppressing the ionic part of the total electrical conductivity\(^6\),\(^7\) in a way quite similar to that employed by Vest and Tallan\(^8\): the pellet was adjusted be-
tween two graphite electrodes, to which a dc voltage (from an Amel mod. 551 potentiostat) lower than the decomposition potential of the salt, was established, while the current flow detected through a high sensitivity galvanometer Amel mod. 668 was recorded until a steady value, \(I_\infty \), was reached. Owing to the very low current signal an accurate screening of the experimental arrangement was required mainly for \(\alpha \)-TII specimens.

Measurements of the ionic transport numbers in TII, TII\(_0\) and TII\(_1\), were carried out by the Tubandt method on a three pellets arrangement clasped between two silver discs.

Results and Discussion

Transport Properties of TII

The conductivity data on TII samples were obtained either at stepwise stabilized temperatures or with a 2°C/min rising temperature. Both methods gave closely similar and reproducible results, fitted by the empirical equation

\[
\sigma = A \exp\left\{ -B/T \right\}
\]

where \(\sigma \) is the specific conductivity: for the \(\alpha \) and \(\beta \) phase regions, \(A = 1288 \) and 0.992 ohm\(^{-1}\) cm\(^{-1}\), \(B = 8600 \) and 6500 K were respectively obtained.

Figure 1 shows the present results along with those by Phipps and Partridge\(^9\) and by Morlin\(^10\), the latter referring to single crystal samples. A satisfactory agreement is observed in the \(\alpha \)-phase region, where the relatively small deviations may be due to an uncertainty in the cell constant values and to differences in the contact resistances. On the contrary wider discrepancies between our and Morlin's results are evidenced in the \(\beta \) phase region.

The \(\beta \rightarrow \alpha \) transition was recently proved to be not instantaneous by Samara\(^5\) and Morlin\(^10\),

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License.
Our conductivity and DTA results allowed to state that the transition occurs at 182 - 185 °C and that, whenever a TlI sample undergoes a \(\beta \leftarrow \alpha \) transition, thermal annealing is compulsory in order to obtain a single phase specimen.

In fact it was possible to follow the transition process by observing the variation of the electronic contribution to the electrical conductivity, which is quite large for \(\beta \)-TlI, but negligible for the \(\alpha \) phase.

In a typical experiment, a \(\beta \)-TlI sample showed at 160 °C a high and at 200 °C (after thermal stabilization) a negligible electronic conductivity: in the same sample, cooled down again to 160 °C, the electronic conductivity was initially still low, but slowly reassumed, after some hours annealing, a constant value as large as at the beginning of the cycle.

By plotting \(I_{\infty} \) vs \(V \) (the latter never exceeding 100 mV) straight lines were obtained, the slope of which corresponded to the electronic conductance, \(C_e \). The ratio between \(C_e \) and the total conductance, \(C_t \), obtained in a.c. with a 10^4 rad/sec frequency, gave the electronic transport number, \(t_e \), with a good approximation.

Figure 2 shows some typical results from which it is apparent that \(t_e = 0.6 \pm 0.1 \) for \(\beta \)-TlI at 100 ÷ 185 °C, whilst for the \(\alpha \)-phase \(t_e \approx 0 \) at 200 °C.

As for ionic transport numbers in TlI, Table 1 reports the results of several determinations in \(\alpha \)-TlI in the temperature range 206 ÷ 255 °C. Measurements at higher temperatures were not reliable owing to the sublimation of TlI.

The \(t_{\text{Tl}} \) values were calculated on the basis of \(\Delta P_{\text{cathodic}} \) and \(\Delta P_{\text{anodic}} \), which refer to the total weight variation of the compartment, i.e., electrode + adjacent pellet.

The data fluctuation and the narrow temperature range did not allow to recognize a particular dependence on temperature.

Taking into account the experimental difficulties of Tubandt transport number determinations on Tl halides\(^{11}\), the given values of \(t_{\text{Tl}} \) must be considered correct within \(\pm 15\% \).

<table>
<thead>
<tr>
<th>Compartement</th>
<th>(T = 206) °C</th>
<th>(T = 212) °C</th>
<th>(T = 224) °C</th>
<th>(T = 225) °C</th>
<th>(T = 255) °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta P_{\text{anodic}})</td>
<td>+4.05 mg</td>
<td>+3.86 mg</td>
<td>+2.61 mg</td>
<td>+2.89 mg</td>
<td>+3.40 mg</td>
</tr>
<tr>
<td>(\Delta P_{\text{cathodic}})</td>
<td>-4.21 mg</td>
<td>-3.51 mg</td>
<td>-3.44 mg</td>
<td>-2.65 mg</td>
<td>-2.10 mg</td>
</tr>
<tr>
<td>(t_{\text{Tl}}) (\text{from anode})</td>
<td>26.5%</td>
<td>27.1%</td>
<td>30.7%</td>
<td>29.9%</td>
<td>28.4%</td>
</tr>
<tr>
<td>(t_{\text{Tl}}) (\text{from cathode})</td>
<td>26.0%</td>
<td>28.1%</td>
<td>28.3%</td>
<td>30.6%</td>
<td>32.2%</td>
</tr>
</tbody>
</table>
The table figures show that in α-TlI, as well as in TlCl and TlBr, the principal carrier is the anion, although the Tl⁺ contribution to the ionic conductivity, amounting to about 30%, is not negligible. The ionic transport numbers in β-TlI, which should attain about 40%, could not be determined because the high electrical resistance would require too long periods or too high voltages for an electrolytic process to become able to give detectable weight variations.

The AgI-TlI System

The phase diagram, as determined by Berg and Lepeshkov, was substantially confirmed. In Fig. 3 log σ vs 1/T is plotted for TlI, AgI and the peculiar compositions $X_{AgI} = 0.33$ and $X_{AgI} = 0.5$, corresponding to the two known intermediate compounds.

Transport number determinations with the Tu-bandt method showed that in both compounds the silver ions must be considered as the only carriers; the results at 160 °C and 162 °C are reported in Table 2.

Tab. 2. Tubandt transport number determinations on the cells Ag/AgI/AgTlI₂/AgI/Ag and Ag/AgI/AgTlI₂/AgI/Ag.

<table>
<thead>
<tr>
<th>Compartement</th>
<th>AgTlI₂ $T=160$ °C</th>
<th>AgTlI₂ $T=162$ °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔP_anodic</td>
<td>−21.20 mg</td>
<td>−11.80 mg</td>
</tr>
<tr>
<td>central pellet</td>
<td>+0.60 mg</td>
<td>+0.65 mg</td>
</tr>
<tr>
<td>ΔP_cathodic</td>
<td>+19.05 mg</td>
<td>+12.25 mg</td>
</tr>
<tr>
<td>flowed charge</td>
<td>18 coul.</td>
<td>10.8 coul.</td>
</tr>
<tr>
<td>weight variation</td>
<td>20.12 mg</td>
<td>12.07 mg</td>
</tr>
<tr>
<td>in coulometer silver electr.</td>
<td>10.12</td>
<td>12.07</td>
</tr>
</tbody>
</table>

Final Remarks

The experimental results lead to the conclusion that the type of conductivity markedly varies passing from TlI to AgTlI₂, AgTlI₂ and AgI: the electronic conductivity, significant in β-TlI, vanishes in the intermediate compounds as well as in AgI; α-TlI shows a predominant anionic conductivity which is totally absent in the other compounds; the ionic transport number of Tl⁺ falls to zero in AgTlI₂ and AgTlI₂ where the silver ions are the only carriers.
Furthermore, the latter compounds show a much lower conductivity than other silver ion conducting poliiodides. This is consistent with the crystal structure of AgTlI₂ and AgTl₂I₃\(^{14}\) which is by no means an "open lattice" structure, as it seems to be required for a good ionic conductivity in solids.

The low conductivity of these salts can also be related to the theories for the crystal bond ionicity by Phillips and Van Vechten\(^{15,16}\) and by Tubbs\(^{17}\), which predict in M\(^n\)X\(^8\)\(^{-n}\) salts a 4-fold or a 6-fold coordination for the cations according to the fact that ionicities of the crystal bonds lie below or above a critical value (0.785 according to Phillips or 0.51 according to Tubbs). For both theories AgI performs ionicity just below and quite close to the critical value, so that on adding to AgI a highly ionic salt such as RbI, NH₄I or KI one obtains compounds where either coordination is possible; this results in many energetically equivalent positions for a silver ion and consequently in a very good conductivity\(^{18}\).

This may not occur when TlI (whose ionicity is very low) is added to AgI.

The authors are indebted to Prof. M. Rolla and Prof. C. Sinistri for useful critical discussion.

\(^{1}\) C. Tubandt and E. Lorenz, Z. Phys. Chem. 87, 513 543 [1914].
\(^{3}\) W. A. Bassett and T. Takahashi, Am. Mineral. 50, 1576 [1965].
\(^{6}\) M. H. Hebb, J. Chem. Phys. 20, 185 [1952].