Differential equations for the auxiliary Green's functions are obtained from (4.29) by scalar multiplication with the dual vectors (4.15). Having solved these equations by a perturbation series we can construct the coordinate independent Green's functions that transform linearly under chiral transformation according to the prescription (4.14), e. g.

\[G^{\mu\nu}(x,y) = \sum_{m=1}^{\infty} \sum_{n=2}^{\infty} \frac{1}{n! m!} \left(\frac{-i}{\hbar} \right)^{(n-m-2)} (T^{(n-1)} \ldots T^{(m-1)})^{\mu}_{\nu} (T^{(n)} \ldots T^{(1)})^{\nu}_{\mu} \sum_{x} x_{\mu} \sum_{y} y_{\nu} \times G^{(n-1)} \ldots G^{(1)}(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}) \mid x_{1} = \ldots = x_{m} = x \mid x_{1} = \ldots = y_{n} = y . \] (4.31)

1. H. Lehmann and H. Trute, DESY preprint 72, 8 [1972].
4. S. Mandelstam, Phys. Rev. 175, 1580 and 1604 [1968].

Generator Coordinate Method and Short Range Correlations

J. da Providência

Laboratório de Física, Universidade de Coimbra, Portugal

and C. M. Shakin

Department of Physics, Case Western Reserve University, Cleveland, Ohio, 44106

(Z. Naturforsch. 28 a, 393—395 [1973]; received 8 December 1972)

To Professor Konrad Bleuler on the occasion of his 60th birthday

It is shown that the cluster expansion formalism previously developed as a basis for a theory of the ground state of correlated systems may be generalised in such a way as to enable the application of the generator coordinate method in the presence of singular interactions, thereby providing also a theory for excited states.

A new interest in the Jastrow method seems to be developing. Investigations of the ground state of correlated Fermi systems, based on cluster expansion formalisms, have been performed by the present authors, and by others. We feel that cluster expansions are also useful for investigating excited states, in particular for extending the generator coordinate method or the random phase approximation (RPA) to systems containing singular interactions. In the present note we describe a method by which the cluster expansion formalism considered in References may be used to apply the generator coordinate method to systems containing short range correlations due to the hard core of the two-body force. In Refs. a wave function of the form

\[\mid \Psi \rangle = \exp S \mid \Phi \rangle \]

where \(\mid \Phi \rangle \) was a Slater determinant,

\[\mid \Phi \rangle = \prod_{i=1}^{N} a_{i} \mid 0 \rangle , \]

and \(S \) was a two-body operator has been considered. In order to describe deviations from equilibrium we will allow \(S \) to contain a one-body part. Therefore we write

\[S = \sum_{i=1}^{N} s_{i} + \frac{1}{2} \sum_{i \neq j}^{N} s_{ij} = \sum_{mi}^{N} (m \mid s \mid i) a_{m}^{\dagger} a_{i} \]

\[- \frac{1}{2} \sum_{mnij}^{N} (m n \mid f \mid ij) a_{m}^{\dagger} a_{n}^{\dagger} a_{j} a_{i} , \]

where \(\mid ij \rangle \) and \(\mid mn \rangle \) are non antisymmetrized states. We use the letters \(i, j, k, \ldots \) to refer to occupied states (holes), the letters \(m, n, p, \ldots \) to refer to unoccupied states (particles), and the greek letters \(\alpha, \beta, \gamma, \ldots \) to refer to either. The quantities \((m n \mid f \mid ij) \) are functions of the quantities \((m \mid s \mid i) \) which may be determined by the prescription that the expectation value of the Hamiltonian \(H \) should be a minimum for fixed values of \((m n \mid s \mid i) \). In order to write down cluster expansions we define \(n \)-particle uncorrelated states
\[|i\rangle = a_i^+ |0\rangle, \quad (4) \]
\[|ij\rangle = a_i^+ a_j^+ |0\rangle, \ldots \quad (5) \]
and the corresponding unnormalized but correlated states
\[|\psi_i\rangle = e^{S} |i\rangle, \quad (6) \]
\[|\psi_{ij}\rangle = e^{S} |ij\rangle. \quad (7) \]
The kets \(|ij\rangle\) are related to the non-antisymmetrized kets \(|i j\rangle\) according to
\[|ij\rangle = \frac{1}{\sqrt{2}} \left(|i j\rangle - |j i\rangle \right). \]
We also define the cluster integrals, which may contain differently deformed states on the left and on the right hand sides of the matrix elements and scalar products,
\[\kappa_{ij} = \langle \psi_i | \psi_j \rangle = \langle i | (1 + s^+ s) (1 + s) | j \rangle, \quad (8) \]
where the matrix \(\hat{\gamma}_{ij}\) satisfies the equation
\[\delta_{ij} = \sum_k \hat{\gamma}_{ik}, \hat{\gamma}_{kj} + \sum_{gh} \hat{\gamma}_{ik}, \hat{\gamma}_{gh} \hat{\gamma}_{gh}, \hat{\gamma}_{kj}. \quad (16) \]
We minimize Eq. (15) by introducing a Lagrange multiplier \(\epsilon_{ij}\) corresponding to Equation (16). In this way we obtain the following equations which determine the quantities \((mn |t| j)\) and \((ij |f^*| mn)\) [as functions of the quantities \((m |s| i)\) and \((i |s^*| m)\)],
\[\sum_{ij} \left(\sum_{g} \hat{\gamma}_{ij}, \hat{\gamma}_{gk} \epsilon_{gk} \epsilon_{ij} \right) = 0 \quad (17) \]
and the matrix \(\hat{\gamma}_{ij}\) satisfies the equation
\[\delta_{ij} = \sum_k \hat{\gamma}_{ik}, \hat{\gamma}_{kj} + \sum_{gh} \hat{\gamma}_{ik}, \hat{\gamma}_{gh} \hat{\gamma}_{gh}, \hat{\gamma}_{kj}. \quad (14) \]
and the matrix \(\hat{\gamma}_{ij}\) satisfies the equation
\[\delta_{ij} = \sum_k \hat{\gamma}_{ik}, \hat{\gamma}_{kj} + \sum_{gh} \hat{\gamma}_{ik}, \hat{\gamma}_{gh} \hat{\gamma}_{gh}, \hat{\gamma}_{kj}. \quad (14) \]
If \(s_i = s'_i\) and \(f_{ij} = f'_{ij}\), so that \(|\Psi\rangle = |\Psi'\rangle\), then Eqs. (12) and (13) give us the expectation value of the energy and the logarithm of the norm of the correlated wave function \(|\Psi\rangle\). When we wish to express the fact that the quantities \(h_{ij}\), \(h_{ik}, j\), \(\hat{\gamma}_{ij}\), \(\hat{\gamma}_{ik}, j\), \(\hat{\gamma}_{ik}, i\), \(\hat{\gamma}_{ik}, j\), \ldots have been computed with \(s_i = s'_i\) and \(f_{ij} = f'_{ij}\), we will write a bar over them. For instance:
\[h_{ij}, \hat{\gamma}_{ij}, \ldots \]
In this way the expectation value of the energy becomes
\[\mathcal{E} = \langle \Psi | H | \Psi \rangle = \sum_{ij} \hat{h}_{ij}, \hat{\gamma}_{ij} + \frac{1}{2} \sum_{ikkj} \hat{\gamma}_{ik}, \hat{\gamma}_{i}, \hat{\gamma}_{j}, \hat{\gamma}_{k} \]
\[= \sum_{ij} \hat{h}_{ij}, \hat{\gamma}_{ij} + \frac{1}{2} \sum_{ikkj} \hat{\gamma}_{ik}, \hat{\gamma}_{i}, \hat{\gamma}_{j}, \hat{\gamma}_{k} \quad (15) \]
sume that the quantities \(\epsilon_{i,j}(0) \) are diagonal

\[
\epsilon_{i,j}(0) = \delta_{ij} \epsilon_i^{(0)}
\]

The quantities \(\epsilon_i^{(0)} \) are, therefore, the self consistent energies for occupied states in the ground state. Equation (17) becomes, then,

\[
\langle m\,n | (t_1 + t_2 + \nu_{12} - \epsilon_i^{(0)}) (1 + s_1 + s_2 + s_1 s_2 + \nu_{12}) | i\,j \rangle = 0.
\]

For an infinite system, when the kinetic energy \(t \) is diagonal

\[
t | n \rangle = \tau_n | n \rangle.
\]

Equation (20) may also be cast in the form

\[
| \psi_{ij} \rangle = (1 + s_1 + s_2) | i\,j \rangle - (Q/e) \nu_{12} | \psi_{ij} \rangle
\]

where

\[
Q = \frac{\sum m\,n}{mn} \tau_m + \tau_n - \epsilon_i^{(0)} - \epsilon_j^{(0)}.
\]

Equation (20) may also be cast in the form

\[
| \psi_{ij} \rangle = (1 + s_1 + s_2) | i\,j \rangle - (Q/e) \nu_{12} | \psi_{ij} \rangle
\]

where

\[
Q = \frac{\sum m\,n}{mn} \tau_m + \tau_n - \epsilon_i^{(0)} - \epsilon_j^{(0)}.
\]

Formally, we also have, therefore

\[
| \psi_{ij} \rangle = (1 + (Q/e) \nu_{12})^{-1} (1 + s_1 + s_2) | i\,j \rangle
\]

The generator coordinate method requires the computation of the overlap integrals \(\langle \psi' | H | \psi' \rangle \) and \(\langle \psi' | \psi' \rangle \). The methods of Refs. 2, 3 are also appropriate to compute the quantities

\[
K(s',s) = \langle \psi' | H | \psi' \rangle / \langle \psi' | \psi' \rangle
\]

and

\[
\Phi(s',s) = \log \langle \psi' | \psi' \rangle,
\]

where \(s \) is some parameter or set of parameters specifying the operators \(s_1 \). In terms of these quantities the integral eigenvalue equation of the generator coordinate method may be written

\[
\int [K(s',s) - E] \phi(s',s) f(s) \, ds = 0.
\]

One obtains

\[
\langle \psi' | H | \psi' \rangle / \langle \psi' | \psi' \rangle = \sum \frac{\epsilon_i^{(0)}}{n} + \frac{\sum (h_{ij} + i)}{ij} \epsilon_i^{(0)}
\]

\[
- \epsilon_i^{(0)} \nu_{ij} \gamma_{i,j} + \frac{1}{2} \sum_{i,j,k} \left(h_{ik} - \epsilon_i^{(0)} \right) \nu_{ij} \gamma_{k,ij}
\]

\[
- \sum_{i,j} \epsilon_i^{(0)} - \left(\sum_{il} h_{ij} - \epsilon_i^{(0)} \nu_{ij} \right) \gamma_{ij}
\]

\[
+ \frac{1}{2} \sum_{i,j,k,l} \left(i k \left(1 + s_i^{+} s_j^{+} \right) + s_l^{+} \right) \Omega \nu_{12} (1 + s_1 + s_2) | j l \rangle \gamma_{j,i} \gamma_{i,l,k}
\]

\[
\log \langle \psi' | \psi' \rangle \cong \sum_{ij} \langle i | s^{+} s | j \rangle \gamma_{i,j}
\]

\[
+ \frac{1}{2} \sum_{ijkl} \left(i k | \left(1 + s_i^{+} s_j^{+} \right) \Omega^{*} \Omega \left(1 + s_1 + s_2 \right) | j l \right) \gamma_{j,i} \gamma_{i,l,k}.
\]

It seems appropriate to replace, in these expressions, the matrix elements \(\gamma_{i,j} \) by their values corresponding to zero deviation from equilibrium. However, the next order corrections are also easily computed, if necessary. For this purpose we write

\[
\gamma_{i,j} = \gamma^{(0)}_{i,j} + \delta \gamma_{i,j}.
\]

We then obtain the following equation for \(\delta \gamma_{i,j} \)

\[
\delta \gamma_{i,j} \equiv - \sum_k \left(\delta h_{ik} \gamma_{k}^{(0)} + h_{ik} \delta \gamma_{k,ij}^{(0)} \right) \gamma_i^{(0)}
\]

where \(\gamma_i^{(0)} \) are the ground state occupation factors, \(\delta h^{(0)}_{ik} \) is the value of \(h_{ik} \) for the ground state, i.e., for \(s_i = 0 \), and

\[
\delta h_{ik} = h_{ik} - h^{(0)}_{ik}.
\]

It would now be a simple matter to generalise the RPA for a system containing short range correlations, using, for instance, the method of Jancovici and Schiff 7. It is however obvious that, to lowest order in the two-body cluster integrals, the equations obtained would be of the Tamm-Dancoff and not of the RPA type.

* Work supported in part by Project CF/1, Instituto de Alta Cultura, Lisboa, Portugal.

On the Construction of Solvable Models of the Many Body Problem

D. Schütte

Institut für Theoretische Kernphysik der Universität Bonn, Germany

(Z. Naturforsch. 28a, 396—403 [1973] ; received 26 January 1973)

Dedicated to K. Bleuler on his 60th birthday

The construction of subalgebras of the set of bilinear products of fermion operators which allow the formation of physically relevant solvable models is investigated. The subalgebras are assumed to be semisimple, hermitean closed and compatible with angular momentum. One obtains two classes of subalgebras, i) the wellknown set of spherical tensors of rank zero and ii) a new class of subalgebras which contain the angular momentum operators. The construction procedure for subalgebras of the second kind is presented in detail (hereby, one starts with the abstract type of the subalgebra and defines the physical model space by the carrier space of a representation) and a number of examples, which provide models not known from the literature, is given.

I. Introduction

The investigation of solvable models is a useful tool for studying the structure of the solutions of the many body problem and to test the validity of different many body approximation techniques. Examples of models suitable for such applications are the pairing Hamiltonian, Elliott's su(3) model of light nuclei containing a quadrupole force, Lipkins two shell model with monopole forces or pairing plus monopole forces and Agassi's four shell model with monopole forces for protons and neutrons.

All these models have their basis in the existence of suitable subalgebras of the Lie algebra \(L_N \) generated by the bilinear products of creation and annihilation operators [of the type so \((2N)\) if a finite number \(N\) of such operators is considered]. This allows to obtain rigorous solutions by group theoretical methods.

In fact, most of the group theoretical techniques of the many body problem are based on such subalgebras. Consequently, the problem of constructing physically relevant subalgebras of \(L_N \) has been discussed extensively in the literature in connection with applications in atomic and nuclear physics. Besides the more schematic examples quoted in the beginning we refer to the following works. For pure configurations (i.e. a Fock space defined by given shell combinations) and by working out suitable chains of subalgebras of so \((2N)\) [or \(u(N)\)] ending with the angular momentum algebra so(3). The elements of each of these subalgebras may be used to define model interactions (which may be relevant parts of the realistic interactions) and to define classifications of the many body states. For the case of mixed configurations it is, however, difficult to obtain in this way a systematic survey on all subalgebras suitable for the construction of physically relevant models.

It is the main purpose of this paper to show that such a survey can be provided by inverting the described construction procedure. This yields an infinite number of different models and one has to decide from case to case, whether the construction has physical meaning in terms of mixed configurations.

In order to make clear this construction, we first analyse the mathematical properties of physically relevant subalgebras (Section II). We derive how
by natural, physically motivated restrictions (semi-simplicity, compactness, compatibility with angular momentum) one is lead to two types of subalgebras, namely either to the set of all bilinear products which commute with the angular momentum or to such subalgebras which contain the angular momentum operators. For the construction of subalgebras of the first type one may proceed in the usual way by starting from a given configuration. Section III gives a brief survey of the structure of such subalgebras yielding in general wellknown models.

In Section IV we describe the construction of subalgebras of the second type. Herefore, we start with the abstract type of the subalgebra, we define the Fock space by the carrier space of a representation (which can be chosen), and we specify the angular momentum structure of that Fock space by a special subalgebra [of the type so(3)] of the abstract Lie algebra (which again can be given arbitrarily).

In Section V some details of the structure of these subalgebras are analysed. We present a number of examples of subalgebras of the second type in terms of their abstract characteristics.

Our aim is to construct subalgebras \(L \) of \(L_N \) (i.e. subspaces of \(L_N \) which are closed with respect to the formation of commutators) which are, on the one hand, simple enough to be treatable by standard group theoretical methods and, on the other hand, allow the construction of physically relevant operators (model hamiltonians) with the help of suitable polynomials in elements of \(L \).

The first condition will be fulfilled if \(L \) is semisimple. The theory of such Lie algebras, especially that of their representations is well developed (see e.g. Refs. 7-19, 20). Also we will assume that \(L \) is hermitean closed, i.e. \(L^* = L \). Physically, this guarantees the possibility to construct hermitean operators. Mathematically, this assumption has the consequence that \(L \) constitutes a representation of an (abstract) semisimple Lie algebra in its compact real form which is unitary with respect to the physically given scalar product of the Fock space.

In the notation of Helgason 7, this abstract type of \(L \) is given by \(\text{so}(n) \), \(\text{su}(n) \) or \(\text{sp}(n) \) (or the exceptional algebras, see Cartan’s list 7) and by direct sums of such Lie algebras.

A main restriction on \(L \) will result from the necessity of physical relevance. A basic condition any model has to fulfil is rotational invariance. Therefore, we will postulate that \(L \) should allow the generation of operators which commute with angular momentum. In order to guarantee this we must first specify the angular momentum structure of \(L_N \).

Let us assume that the single particle space is closed with respect to angular momentum, i.e. the quantum number \(\alpha \) can be specified as

\[
\alpha = k j m \\
(m = -j, \ldots, j, k = 1, \ldots, n_j, j = j_1, \ldots, j_s).
\]

(2)

It is wellknown that \(L_N \) can then be decomposed into spherical tensors (tensor operators)\(^{21}\)

\[
L_N = (A_{\mu}^{JM}, M = -J, \ldots, J, \mu = 1, \ldots, \mu_j, J = J_1, \ldots, J_A)
\]

(3)

where the operator \(A_{\mu}^{JM} \) are, in a suitable enumeration, the coupled operators\(^{15, 21-23}\)

\[
(a_{kj}^{+} a_{k'j'} - a_{k'j'}^{+} a_{kj})^{JM}, (a_{kj}^{+} a_{k'j'}^{+})^{JM}, (a_{kj}, a_{k'j'})^{JM}.
\]

For any infinitesimal rotation \(e \) i.e. \(e \in \text{so}(3) \) and its representation \(d(e) \) on the Fock space we have then that

\[
[d(e), A_{\mu}^{JM}] = \sum_{M'} d_{M'M}^{J}(e) A_{\mu}^{JM'}.
\]

(4)
(We denote by d^J the standard irreducible representation of $so(3)$ on C^{2J+1}.)

We now impose in the following the condition on L that also this subalgebra of L_N is completely decomposable into spherical tensors, i.e. there exist B_{vJ}^{JM} such that

$$L = (B_{vJ}^{JM}, M = -J, \ldots, J, \quad v = 1, \ldots, v_J, \quad J = J_1, \ldots, J_B) \quad (5)$$

where the operators B_{vJ}^{JM} are certain linear combinations of the operators $A_{J,vM}^{\mu}$ with J, M fixed.

This guarantees that, up to second order, the following operators are rotational invariant, i.e. commute with all $d(e) \in so(3)$:

$$B_{vJ}^{JM}, \quad (v = 1, \ldots, v_J, M = -J, \ldots, J, J = J_1, \ldots, J_B) \quad (6)$$

The above assumption (L semisimple, conditions (5), i.e. $[d(e),L] \subset L, L' = L$) now lead, by the application of standard techniques of the theory of Lie algebras, to the following structure of L:

There are two alternatives

i) L commutes with all $d(e) \in so(3)$.

ii) All $d(e)$ are contained in L, if the Fock space is suitably restricted, i.e. if one takes into account for the definition of L_N a suitable subset of the creation and annihilation operators such that the elements of L remain unaltered.

The proof, which is provided by a generalization of the wellknown theorem, that any derivation of a semisimple Lie algebra is inner, will not be given here. It is not necessary for our further construction of physically relevant subalgebras of L_N, it is only interesting in order to judge the generality of these constructions. Given the two alternatives i) and ii), a systematic construction of corresponding subalgebras L is now possible. Hereby, for the first case, L_N can be given, whereas in case ii) the type of shell combinations [Eq. (2)] has to be checked whether physically interesting systems can be described in the corresponding Fock spaces.

III. The Centralizer of the Angular Momentum

We first discuss briefly the subalgebras of type i). From $[d(e),L] = 0 \in so(3)$ we see that the maximum subalgebra of this type is given by the centralizer z_a of the angular momentum, i.e. by the set of all elements of L_N which commute with all $d(e) \in so(3)$. Any other L obeying i) is then a subalgebra of z_a. Equation (4) tells us that z_a consists of all spherical tensors of rank zero, i.e.

$$z_a = (A_{\mu}^{00}, \quad \mu = 1, \ldots, \mu_0) \quad (7)$$

Taking into account the kjm classification of the single particle states, we obtain for z_a the direct sum decomposition

$$z_a = \bigoplus_{j=\frac{1}{2}} z_j \quad (8)$$

with

$$z_j = \sum_m (a_{kjm} a_{k'jm} - a_{k'jm} a_{kjm}), \quad \sum_m s_m a_{kjm} a_{k'jm} - \sum_m s_{kj} a_{kjm} a_{k'jm}, \quad \sum_m s_{k'j} a_{k'jm} a_{kjm}, \quad k,k' = 1, \ldots, n_j, \quad j = 1, \ldots, n_j) \quad (9)$$

It may be checked easily (see Refs. 21, 24, 25) that z_j has the structure

$$z_j \cong sp(n_j) \text{ for halfinteger } j, \quad so(2n_j) \text{ for integer } j. \quad (10)$$

Hereby, halfinteger j means that j and $d(e)$ correspond to the total angular momentum, integer j means that we are treating j and $d(e)$ as orbital angular momentum. Restricting z_j to elements which commute with the particle number operator $N^{00} = \sum_{k,m} a_{kjm} a_{kjm}$ and taking out N^{00} itself yields a subalgebra

$$z_j^0 = (\sum_m a_{kjm} a_{k'jm} - \delta_{kk'}n_j N^{00}, \quad k,k' = 1, \ldots, n_j) \quad (11)$$

z_j and z_j^0 obviously are subalgebras of L_N which fall into the category i). They are wellknown from the literature (see e.g. 21) and we only mention schematically some applications based on z_a.

In the case of halfinteger j we have the pairing models for n shells, which assume $n_j = 1, \quad S = n$, the operators (6) giving the wellknown pairing interaction. The monopole models for two shells and four shells exploit the possibilities $S = 1, \quad n_j = 2$ and 4 by considering operators out of z_j^0.

The pairing plus monopole model is constructed by taking elements of z_j for $n_j = 2, \quad S = 1$. The operators of z_j are also used for the classification of states. Thus, z_j for $n_j = S = 1$ defines seniority, z_j^0 for $n_j = 1, \quad S = 2$ may be interpreted as isospin, z_j being a generalization of both concepts in this case.
For integer j (orbital angular momentum interpretation of d) and $n_j = 4$, $S = 1$, z_j yields the $su(4)$ classification scheme for light nuclei (Wigner supermultiplet 27) which may be generalized to $z_j \cong so(8)$ (see Ref. 28).

For the atomic nucleus, one should mention the application of z_j^0 and z_j in the case of $n_j = 2$, $S = 1$, as described e.g. in Ref. 15.

IV. Subalgebras Containing the Angular Momentum

We shall now describe the construction of subalgebras of L_N which are of the type ii). For simplicity, we will assume that L is build up only of elements which do not change the particle number, i.e. we will assume L to be subalgebra of L_N^0, where

$$L_N^0 = (a_+^\alpha a_\beta - a_\beta a_+^\alpha, \alpha, \beta = 1, \ldots, N) \cong u(N).$$

More general subalgebras may be easily obtained, however, it has been not possible to find physically interesting examples.

Also, we will make use of the fact that the structure $L_N^0 \cong u(N)$ results from the (Lie algebra) isomorphism σ between $N \times N$ matrices $A_{\alpha\beta}$ and L_N^0 given by (we use summing convention over doubly appearing indices):

$$\sigma(A) = \frac{1}{2} A_{\alpha\beta} (a_+^\alpha a_\beta - a_\beta a_+^\alpha).$$

Thus, L can be specified by some abstract Lie algebra λ (λ is a direct sum of Lie algebras of the type of Cartan's list 7 in their compact real form) and a special faithful unitary representation ϱ of λ on an N-dimensional complex space (the single particle space) such that

$$L = \sigma \varrho (\lambda).$$

Consequently, any possible L (of our restricted type) can be constructed by a suitable choice of λ and ϱ, by defining the single particle space (generating the Fock space) by the carrier space of the representation ϱ and by defining the scalar product in that space so that ϱ is unitary.

As a next step we shall make use of the fact that the angular momentum operators are contained in L (alternative ii). This will yield in our construction the angular momentum structure of the single particle space and a corresponding inner structure of L.

In general, the angular momentum representation ϱ_λ (ϱ_λ yields, by decomposition into irreducible parts, the classification kjm) and σ through

$$d = \sigma \varrho_\lambda.$$

By construction, σ and ϱ are faithful representations. In addition, we will assume that also ϱ_λ is a faithful representation of $so(3)$, i.e. that we have a non-trivial angular momentum structure in the single particle space. From the relation $d[so(3)] \subseteq L$ (alternative ii) follows then that

$$\varrho_\lambda = \varrho \mid _{\lambda'}$$

where $\lambda' = \varrho^{-1} \varrho_\lambda [so(3)]$, (16)

i.e. ϱ_λ is the restriction of ϱ to a suitable subalgebra λ' of λ which is of the type $so(3)$, the Lie algebra of rotations.

For the purpose of construction, we may now choose $\lambda' \subseteq \lambda$ and define ϱ_λ through Eq. (16), i.e. the angular momentum decomposition of the single particle space will be defined through the analysis of ϱ with respect to the subalgebra λ'. A convenient characterization of the choice of λ' is obtained with the help of a special faithful representation of λ for which we take the fundamental representation $\varrho_\ell^{19,29}$. (This is the irreducible representation by $n \times n$ matrices in the case of $so(n)$, $su(n)$ and $sp(n/2)$ which define these Lie algebras.) The type of embedding of λ' into λ is then given by a special $n \times n$ representation of $so(3)$, called ϱ'. Summarizing and specifying more exactly, we define a class of subalgebras L of L_N containing the angular momentum operators by the following prescriptions:

1) Choose any semisimple Lie algebra λ in its compact real form (abstract type of L).

2) If the carrier space of the (faithful) fundamental representation ϱ_ℓ of λ has dimension n, choose any faithful representation ϱ' of $so(3)$ on C^n such that

a) $\varrho'(e) \in O_l(\lambda)$ for $e \in so(3)$

[i.e. the matrices $\varrho'(e)$ must be, e.g., real or symplectic, if λ is, e.g., $so(n)$ or $sp(n/2)$];

b) the decomposition of ϱ' into irreducible parts

$$\varrho' = d^l \oplus \ldots \oplus d^r$$

has the property that all I_k ($k = 1, \ldots, r$) are either simultaneously integer or simultaneously halfinteger.

[The reason for b) will become clear in 5.] This defines $\lambda' = \varrho^{-1} \varrho'[so(3)]$ as subalgebra of λ.

SOVLABLE MODELS OF THE MANY BODY PROBLEM 399
Having \(\mathcal{L} \), \(\rho \)' is, in turn, given through the restriction of \(\rho_{\mathcal{L}} \) to \(\mathcal{L}' \):

\[
\rho' = \rho_{\mathcal{L}}|_{\mathcal{L}'}.
\]

3) Choose any faithful representation \(\rho \) of \(\lambda \) on an \(N \)-dimensional complex space, called \(S \).

4) Define the physical single particle space by \(S \) and choose the scalar product in \(S \) such that \(\rho \) is unitary.

5) Define the angular momentum structure of \(S \), i.e. \(\rho_a \), by that representation of \(\text{so}(3) \) which is given by the restriction of \(\rho \) to \(\mathcal{L}' [\cong \text{so}(3)] \). The decomposition of \(\rho_a \) into irreducible parts

\[
\rho_a = \rho|_{\mathcal{L}'} = d^h \oplus \ldots \oplus d^{h_s} (18)
\]

defines the angular momentum quantum numbers (2) of the single particle states. The condition 2)b) guarantees that the \(j_k \) will be always either simultaneously integer or halfinteger allowing the physical interpretation of \(\rho_a \) and \(d = \sigma \rho_a \) to be either orbital or total angular momentum.

V. Structures and Examples of Subalgebras of Type ii)

For clarification and concreteness, we will now present the subalgebras of \(L_N \) containing the angular momentum in some more detail, we will give some additional structure and a number of examples.

Let us assume that \(\lambda \) has dimension \(q \) and that the compact real form of \(\lambda \) has a basis \(\lambda_1, \ldots, \lambda_q \) so that \(\lambda_1, \ldots, \lambda_3 \) constitute \(\mathcal{L}' [\cong \text{so}(3)] \) in the canonical way (i.e. that we have that \([\lambda_k, \lambda_l] = \epsilon_{klm} \lambda_m, k, l, m = 1, \ldots, 3 \)). We define further \(\rho_a (\lambda) = X^a, \mu = 1, \ldots, q \), where \(X^a \) are antihermitean complex \(N \times N \) matrices.

A basis of \(L \) is then provided by \(L_1 \ldots L_q \) with

\[
L_{\mu} = \sigma \rho (\lambda) = \frac{1}{2} X^a_{\mu} (a_\alpha^* a_\beta - a_\beta^* a_\alpha) \quad (19)
\]

The angular momentum operators corresponding to an infinitesimal rotation around the \(k \)-axis are given by

\[
L_k = X_{a_\alpha^* a_\beta}^k \quad (k = 1, 2, 3) \quad (20)
\]

(We used trace \(X^k = 0 \)). Thus, the matrices \(X_{a_{\alpha^*} a_{\beta}}^k \) define the representation \(\rho_a \), whose decomposition into irreducible parts [Eq. (18)] yields the single particle angular momentum.

The decomposition of \(L \) into spherical tensors [Eq. (5)] amounts to the choice of a special basis of \(L \) or \(\lambda \). This basis is obtained by considering the adjoint representation \(\rho_{\text{ad}} \) of \(\lambda \) (i.e. the representation through the structure constants, see Refs. 7, 19–21), and by performing the analysis of \(\rho_{\text{ad}} \) with respect to the subalgebra \(\mathcal{L}' \). Calling the restriction of \(\rho_{\text{ad}} \) to \(\mathcal{L}' \rho'_{\text{ad}} \), we write for this analysis

\[
\rho'_{\text{ad}} = \rho_{\text{ad}} |_{\mathcal{L}'} = d^j \oplus \ldots \oplus d^{j_s}. \quad (21)
\]

A determination of the corresponding irreducible subspaces is equivalent to the determination of the basis \(B^M_{j} \) [Eq. (5)].

The different types of one and two body operators, as given in Eq. (6), are known through the analysis (21). Any model hamiltonian, generated from \(L \), which is hermitean, rotational invariant and contains only one and two body forces is defined by a real linear combination of the hermitean forms of the operators (6) (Hermiticity can be achieved since the \(L_{\mu} \) are antihermitean). These model hamiltonians can be diagonalized by group theoretical methods using the theory of representations of \(\lambda \).

The types of decomposition (17), (18) and (20) can be obtained by standard techniques. In a number of cases they are explicitly known from the literature 19.

In order to give some examples we have quoted in table 1 the structure of subalgebras of \(L_N \) containing the angular momentum operators for some cases where \(\lambda \) is simple and \(\rho \) is irreducible. This structure is characterized through the type of imbedding \(\mathcal{L}' \subset \lambda \) (analysis (17) of \(\rho' \)), the types of tensor operators constituting \(L \) (analysis (21) of \(\rho'_{\text{ad}} \)) and the dimension \(N \) and angular momentum structure of the single particle space \(S \) [analysis (18) of \(\rho_a \)] which must be assumed in order to realize \(L = \rho a (\lambda) \).

The representation \(\rho \) is characterized through the maximum weights. (Note that the decompositions (17) and (21) are independent from \(\rho_a \).

The structure of the decompositions (17), (18) and (21) is always given by the corresponding set of angular momentum values. For \(\text{su}(3), \text{sp}(2) \) and \(\text{su}(4) \), all possibilities for \(\rho_a \) are considered, for the other choices of \(\lambda \) only the irreducible \(\rho' \) is taken into account.

We want to draw the attention to the following interesting examples.

First we recover Elliott’s \(\text{su}(3) \) model by setting \(\lambda = \text{su}(3) \) and \(\rho = (L, 0) \). For this choice of \(\lambda \) and \(\rho \), the single particle angular momentum structure cor-
Table 1. Examples of subalgebras L of L_N containing the angular momentum operators. The characterization of the subalgebras L is given through the type λ, the representation ϱ' [analysis of Eq. (17)] defining the imbedding $X' \subset X$, the analysis of $\varrho'_{\text{ad}} = \varrho_{\text{ad}}|_{\varrho'}$ [Eq. (21)] yielding the decomposition of L into spherical tensors and the representation $\varrho >$ defining L for which we quote the maximum weights, the dimension N of the representation space S and the analysis (18) of $\varrho_{\text{ad}} = \varrho_{\text{ad}}|_{\varrho'}$ defining the set of shells which have to be assumed in order to constitute L. All decompositions are characterized through the possible angular momentum values and their degeneracy (upper index, see Ref. 19).

<table>
<thead>
<tr>
<th>λ = su(3)</th>
<th>$\varrho' = (1)$</th>
<th>$\varrho'_{\text{ad}} = (1,2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϱ</td>
<td>$N = \dim S$</td>
<td>$\varrho_a = \varrho</td>
</tr>
<tr>
<td>(10)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(20)</td>
<td>8</td>
<td>2, 0</td>
</tr>
<tr>
<td>(L 0)</td>
<td>$\frac{1}{2}(L+1) (L+2)$</td>
<td>$L, L-2, \ldots, 1$ or 0</td>
</tr>
<tr>
<td>(11)</td>
<td>8</td>
<td>2, 1</td>
</tr>
<tr>
<td>(21)</td>
<td>15</td>
<td>3, 2, 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\lambda = \text{sp}(2)$</th>
<th>$\varrho' = (3/2)$</th>
<th>$\varrho'_{\text{ad}} = (3/2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϱ</td>
<td>$N = \varrho_a$</td>
<td>ϱ_a</td>
</tr>
<tr>
<td>(10)</td>
<td>3/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(01)</td>
<td>5/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(20)</td>
<td>3, 1</td>
<td>1/2, 0</td>
</tr>
<tr>
<td>(11)</td>
<td>7/2, 5/2, 1/2</td>
<td>3/2, 1/2</td>
</tr>
<tr>
<td>(02)</td>
<td>4, 2</td>
<td>2, 1, 0</td>
</tr>
<tr>
<td>(30)</td>
<td>20</td>
<td>3/2, 1/2</td>
</tr>
<tr>
<td>(21)</td>
<td>6, 4, 3, 0</td>
<td>3/2, 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\lambda = \text{su}(4)$</th>
<th>$\varrho' = (3/2)$</th>
<th>$\varrho'_{\text{ad}} = (3/2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϱ</td>
<td>$N = \varrho_a$</td>
<td>ϱ_a</td>
</tr>
<tr>
<td>(100)</td>
<td>3/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(010)</td>
<td>7</td>
<td>1/2</td>
</tr>
<tr>
<td>(001)</td>
<td>6/2</td>
<td>0</td>
</tr>
<tr>
<td>(200)</td>
<td>3, 1</td>
<td>1/2, 0</td>
</tr>
<tr>
<td>(110)</td>
<td>7/2, 5/2, 3/2, 1/2</td>
<td>3/2, 1/2</td>
</tr>
<tr>
<td>(020)</td>
<td>4/2</td>
<td>2, 1, 0</td>
</tr>
<tr>
<td>(300)</td>
<td>20</td>
<td>3/2, 1/2</td>
</tr>
<tr>
<td>(210)</td>
<td>6, 4, 2, 0</td>
<td>3/2, 1/2</td>
</tr>
<tr>
<td>(201)</td>
<td>9/2, 7/2, 5/2, 3/2</td>
<td>3/2, 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\lambda = \text{sp}(3)$</th>
<th>$\varrho' = (5/2)$</th>
<th>$\varrho'_{\text{ad}} = (5, 3, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϱ</td>
<td>$N = \varrho_a$</td>
<td>ϱ_a</td>
</tr>
<tr>
<td>(100)</td>
<td>6</td>
<td>5/2</td>
</tr>
<tr>
<td>(010)</td>
<td>7</td>
<td>4/2</td>
</tr>
<tr>
<td>(001)</td>
<td>9/2, 3/2</td>
<td>0</td>
</tr>
<tr>
<td>(200)</td>
<td>21</td>
<td>5, 3, 1</td>
</tr>
<tr>
<td>(110)</td>
<td>64</td>
<td>13/2, 11/2, 9/2, 7/2, 5/2, 3/2, 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\lambda = \text{so}(7)$</th>
<th>$\varrho' = (3)$</th>
<th>$\varrho'_{\text{ad}} = (5, 3, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϱ</td>
<td>$N = \varrho_a$</td>
<td>ϱ_a</td>
</tr>
<tr>
<td>(100)</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>(010)</td>
<td>27</td>
<td>6, 4, 2</td>
</tr>
<tr>
<td>(001)</td>
<td>21</td>
<td>5, 3, 1</td>
</tr>
<tr>
<td>(002)</td>
<td>35</td>
<td>6, 4, 3, 2, 0</td>
</tr>
</tbody>
</table>

The eigenvalues of Q can be easily determined by considering representations of $\text{su}(3)$ and the chain $\text{so}(3) \supset \text{su}(3)$. The model (22) is Elliott's $\text{su}(3)$-model within one oscillator shell 2, and it has been successfully applied to light nuclei and which is
usually constructed with the help of the symmetry properties of the harmonic oscillator problem. This yields φ in a special way, however, it is clear from our construction that the radial parts of the single particle states have not to be oscillator functions (this has been noted by Harvey3).

All other examples of subalgebras with their corresponding models can be conceived as generalizations of Elliott's model allowing other configuration spaces and — in general — more types of interaction. A most interesting example occurs for $\lambda = \text{su}(4)$ and $\varphi' = (3/2)$. For $\varphi = (010)$, the decomposition (18) yields the angular momentum structure of the S-D shell, whereas choosing $\varphi = (110)$ one obtains the structure of the P-F shell with spin orbit splitting. Thus in the first case d has to be interpreted as orbital, in the 2nd case as total angular momentum. In both examples L contains, according to the analysis (21) of φ_{su4}, a set of quadrupole and octopole operators (Q^{2M} and O^{3M}), so that, in addition to (22) and the total angular momentum, contains an octopole-octopole interaction. A detailed investigation of this model will be devoted to a future publication.

Since the L_{μ} conserve the particle number [see Eq. (19)] φQ defines a representation of λ on any n-body space (generated by $a_1^+\ldots a_n^+|0\rangle$). The decomposition of this representation into irreducible parts yields a special basis in the n-body space and defines quantum numbers in addition to angular momentum. In Elliott's $\text{su}(3)$ model, such basis systems have shown up to be useful for truncation even for the case of realistic forces3, and it is clear that one may try such applications also for the generalized subalgebras constructed here.

Besides that, a number of other examples of our table should be useful for more schematic investigations (such as test of approximation techniques):

- E.g. we have the (00100) representation of $\text{su}(6)$ and the (0010000) representation of $\text{su}(8)$ allowing the construction of models containing four ($J = 2, 3, 4, 5$) resp. six ($J = 2, 3, 4, 5, 6, 7$) different types of model interactions on Fock spaces which contain a rather rich shell structure.

Finally, it should be mentioned that for a single j shell, we recover the wellknown examples of subalgebras of type ii). They are given by the choices $\lambda = so(2j + 1)$ (resp. $sp((2j + 1)/2)$) for j integer (resp. j halfinteger), $\varphi' = dj$ and $\varphi = \varphi_t$, Refs. 15, 11. Considering direct sums, these subalgebras can be generalized to more shells3. For the atomic nucleus, also the choice $\lambda = g_2$, $\varphi' = d^3$, $\varphi = \varphi_t$ has found interesting applications15.

It is a pleasure to thank Professor K. Bleuler for his interest and for many fruitful discussions concerning this work.

Äquivalenz der N*-Beiträge in der Starken Kopplung
zu einem skalaren N—N-Potential

SIEGFRIED WAGNER *
Institut für Theoretische Kernphysik der Universität Bonn

Konrad Bleuler zum 60. Geburtstag gewidmet

The coupled-channel contribution of N_3^* isobars, which appear in the solutions of the fixed-source strong coupling field equations, are equivalent to an effective scalar N—N potential with the range of the \(\sigma \)-exchange in usual OBE models.

1. Die Lösungen der starken Kopplung für das NN-System

Eine notwendige Voraussetzung der Theorie ist die Existenz eines Formfaktors für die Nukleonen. Es werden im Gegensatz zur gewöhnlichen Störungsreihe (die für physikalische Kopplungskonstanten bekanntlich divergiert) Entwicklungskoeffizienten zur unendlichen Macht des Kopplungsfaktors berechnet. Damit entsteht ein Mehrkanalproblem. In niedrigster Ordnung der Störungsreihe erhält man:

\[
\left[- \frac{d^2}{dx^2} + \frac{\ln(\ln 1 + x^2)}{x^2} + \frac{V(x)}{x^2} \right] \psi_n(x, E) = - \frac{1}{x^2} \psi_{n+1}(x, E) + \frac{1}{x^2} \psi_{n-1}(x, E) - \frac{1}{x^2} \psi_{n+1}(x, E) + \frac{1}{x^2} \psi_{n-1}(x, E)
\]

mit \(\psi_n(x, E) \) und \(\psi_{n+1}(x, E) \) die Lösungen der N*-Beiträge in der Starken Kopplung.