Das Kernniveauschema von Yb 175

DIETER BREITIG

Physik-Department, Technische Universität, München und Forschungsanlage der Dänischen Atomenergiekommission, Risø

(Herrn Professor Dr. H. Maier-Leibnitz zum 60. Geburtstag gewidmet)

Das Niveauschema für Yb 175 wurde zuerst von BUERKEL und BURKE et al. 4 erlaubten die Identifizierung der Rotationsniveaus mit höheren Spins in diesen Banden und deuten auf eine Rotationsbande mit \(K = 3/2^+ \) bei etwa 1616 keV hin. Außerdem wurde jeweils das 9/2- und 13/2-Niveau in den Bändern positiver Parität [624 \(\uparrow \)] und [633 \(\uparrow \)] gefunden. BONDARENKO et al. 5 untersuchten mit einem Germaniumdetektor das hoch- und niederenergetische Yb 174 \((n,\gamma)\)-Spektrum. Zusammen mit Konversionselektronendaten und \((\beta,\gamma)\)-Koinzidenzen erlaubten ihre Ergebnisse eine gesicherte Einordnung der stärksten Übergänge und den Vorschlag eines \(K = 3/2^+ \)-Niveaus bei 1067 keV. FUNK ET AL. 6 schlugen auf der Grundlage von \((\beta,\gamma)\)- und \((\gamma,\gamma)\)-Koinzidenzen beim Zerfall von Tm 175 einige 3-Quasiteilchenzustände im Energiebereich von 1,5–2,0 MeV vor. Diese Messungen führten zwar zu einer weitgehenden Klärung des Niveauschemas, ließen jedoch die Frage nach weiteren, nach dem Nilssonmodell angeordneten \((d,p)\)- und \((d,t)\)-Bandenmischungsrechnung unter Einschluß der Übergangswahrscheinlichkeiten eine wesentlich

1. Einleitung

Das Niveauschema für Yb 175 wurde zuerst von WIEN 3 durch Zerfallsmessungen des Tm 175 untersucht. Neben den 9/2 Niveau in der Grundzustandsrotationsbande wurden dabei die Niveaus mit niedrigem Spin in den Rotationsbanden [510], [512\(\downarrow \)], [512\(\uparrow \)] und [521\(\downarrow \)] gefunden. Die \((d,p)\)-

Sonderdruckanforderungen an Dr. O. SCHULT, Physik-Department E 17, Technische Universität München, D-8000 München 2, Arcisstraße 21.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und zur folgenden Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License.
weitergehende Kenntnis der bisher nur unvollständig bekannten \(\gamma\)-Übergänge wünschenswert.

Das hochauflösende Riso-Kristallspektrometer ist mit seinem großen dynamischen Intensitätsmeßbereich und der hohen Empfindlichkeit bei niedrigen Energien sehr geeignet, um in einer \((n,\gamma)\)-Messung trotz des kleinen Einfangsquerschnitts von Yb\(174\) \(\approx 65\) barn\(^7\) auch schwache Übergänge sichtbar zu machen.

Es ist der Gegenstand der vorliegenden Arbeit, durch diese \((n,\gamma)\)-Messung die offenen Fragen einer Klärung zuzuführen.

2. Experimentelle Methode

Das Yb\(174\)\(\,(n,\gamma)\) -Spektrum wurde mit dem Diffraktometer\(^8\) in Riso gemessen. Als Quellenmaterial wurde Ytterbiumoxyd vom Reaktorzentrum Seibersdorf der Österreichischen Studiengesellschaft für Atomenergie und vom Isotope Development Center, Oak Ridge National Laboratory, verwendet. Der Einfang in Yb\(174\) betrug 99,86\% bzw. 97,66\% der Gesamteinfangsrate. Einzelheiten über die Herstellung der erforderlichen extrem dünnen Strahlenquellen und ihre Montage finden sich an anderen Stellen\(^9\),\(^10\). Die energieabhängige Nachweisgrenze für \((n,\gamma)\)-Linien in dieser Messung ist in Abb. 1 dargestellt.

Die registrierten Spektren wurden mit Computern ausgewertet\(^10\),\(^11\). Zur Energieeichung dienten die von Bergvall\(^12\) sehr genau gemessenen \(K_{2\gamma}\) und \(K_{2\gamma}\)-Röntgen-Linien. Die Gamma-Intensitäten wurden unter Berücksichtigung der Nachweiskurve des Spektrometers\(^10\) und der wirksamen \(\gamma\)-Absorption durch Anschluß an die \(\gamma\)-Übergänge vom Zerfall\(^13\) des Yb\(175\) bestimmt (Eichunsicherheit des Absolutintensitäts-anschlusses etwa 30\%).

3. Meßergebnisse

Die auf die oben angedeutete Weise erhaltenen niederenergetischen Yb\(174\)\(\,(n,\gamma)\)-Linien sind in Tab. 1 wiedergegeben. Übergänge durch Neutonen­einfang in anderen Yb-Isotopen und Verunreinigungen\(^10\) konnten u. a. durch Vergleichsmessungen\(^14\) identifiziert werden. Sie sind in Tab. 1 nicht aufgeführt.

4. Yb 175-Niveauschema und Diskussion

Unter Verwendung der früheren Daten wurde aus den in Tab. 1 mitgeteilten Werten das in Abb. 2 gezeigte Niveauschema konstruiert. Es enthält 90\% der Gesamtintensität der im Rahmen dieser Arbeit gemessenen \(\gamma\)-Linien. Die angegebenen Niveau­energien sind mit dem Eichfehler \(2 \times 10^{-5} x^E\) be­haftet und können zusätzlich durch einen systemati­schen Fehler\(^10\) (bis zu \(3 \times 10^{-5} x^E\)) verfälscht sein.

Die Grundzustandsrotationsbande (Grb)

Der Grundzustand des Yb\(175\) ist der \([514\underleftarrow \downarrow]\)-Nilsson-Term. In der \((d,p)\)-Reaktion wurden von Burke et al.\(^4\) Niveaus bei 101 und 225 keV als der 9/2- bzw. 11/2-Zustand der \([514\underleftarrow \downarrow]\)-Band identifiziert. Wie bereits Wien\(^3\) feststellte, wird der erste

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1378,5</td>
<td>700</td>
<td>4,6</td>
<td>2,7</td>
</tr>
<tr>
<td>1308,0</td>
<td>600</td>
<td>4,2</td>
<td>1,0</td>
</tr>
<tr>
<td>1197,1</td>
<td>450</td>
<td>3,3</td>
<td>0,88</td>
</tr>
<tr>
<td>1169,7</td>
<td>450</td>
<td>3,3</td>
<td>0,35</td>
</tr>
<tr>
<td>1154,69</td>
<td>250</td>
<td>3,0</td>
<td>0,14</td>
</tr>
<tr>
<td>1128,20</td>
<td>300</td>
<td>2,9</td>
<td>0,93</td>
</tr>
<tr>
<td>1115,51</td>
<td>300</td>
<td>2,0</td>
<td>0,74</td>
</tr>
<tr>
<td>1089,5</td>
<td>450</td>
<td>1,9</td>
<td>0,67</td>
</tr>
<tr>
<td>1080,1</td>
<td>700</td>
<td>2,8</td>
<td>0,31</td>
</tr>
<tr>
<td>1060,8</td>
<td>700</td>
<td>2,8</td>
<td>0,53</td>
</tr>
<tr>
<td>1052,9</td>
<td>600</td>
<td>2,7</td>
<td>0,39</td>
</tr>
<tr>
<td>1022,4</td>
<td>450</td>
<td>2,5</td>
<td>0,23</td>
</tr>
<tr>
<td>1008,81</td>
<td>200</td>
<td>1,6</td>
<td>0,62</td>
</tr>
<tr>
<td>1006,20</td>
<td>300</td>
<td>1,6</td>
<td>0,35</td>
</tr>
<tr>
<td>992,67</td>
<td>300</td>
<td>1,6</td>
<td>0,55</td>
</tr>
<tr>
<td>988,18</td>
<td>200</td>
<td>1,6</td>
<td>0,57</td>
</tr>
<tr>
<td>982,55</td>
<td>150</td>
<td>1,5</td>
<td>0,84</td>
</tr>
<tr>
<td>976,6</td>
<td>400</td>
<td>2,2</td>
<td>0,18</td>
</tr>
<tr>
<td>961,1</td>
<td>200</td>
<td>2,1</td>
<td>0,10</td>
</tr>
<tr>
<td>957,3</td>
<td>400</td>
<td>2,1</td>
<td>0,11</td>
</tr>
<tr>
<td>954,06</td>
<td>300</td>
<td>2,2</td>
<td>0,62</td>
</tr>
<tr>
<td>947,25</td>
<td>300</td>
<td>2,1</td>
<td>0,29</td>
</tr>
<tr>
<td>945,04</td>
<td>170</td>
<td>1,4</td>
<td>0,45</td>
</tr>
<tr>
<td>941,15</td>
<td>170</td>
<td>1,4</td>
<td>0,53</td>
</tr>
<tr>
<td>932,27</td>
<td>300</td>
<td>1,9</td>
<td>0,13</td>
</tr>
<tr>
<td>904,65</td>
<td>300</td>
<td>2,0</td>
<td>0,29</td>
</tr>
<tr>
<td>894,68</td>
<td>150</td>
<td>1,3</td>
<td>0,43</td>
</tr>
<tr>
<td>871,69</td>
<td>80</td>
<td>1,2</td>
<td>1,56</td>
</tr>
<tr>
<td>869,68</td>
<td>120</td>
<td>1,8</td>
<td>0,65</td>
</tr>
<tr>
<td>866,18</td>
<td>300</td>
<td>1,8</td>
<td>0,11</td>
</tr>
<tr>
<td>862,31</td>
<td>250</td>
<td>1,8</td>
<td>0,18</td>
</tr>
<tr>
<td>858,26</td>
<td>170</td>
<td>1,2</td>
<td>0,29</td>
</tr>
<tr>
<td>852,68</td>
<td>170</td>
<td>1,8</td>
<td>0,32</td>
</tr>
<tr>
<td>841,67</td>
<td>90</td>
<td>1,1</td>
<td>0,89</td>
</tr>
<tr>
<td>834,98</td>
<td>300</td>
<td>1,7</td>
<td>0,12</td>
</tr>
<tr>
<td>825,22</td>
<td>70</td>
<td>1,1</td>
<td>1,00</td>
</tr>
<tr>
<td>821,25</td>
<td>250</td>
<td>1,5</td>
<td>0,090</td>
</tr>
<tr>
<td>816,23</td>
<td>100</td>
<td>1,1</td>
<td>0,86</td>
</tr>
<tr>
<td>812,09</td>
<td>120</td>
<td>0,63</td>
<td>0,67</td>
</tr>
<tr>
<td>811,39</td>
<td>70</td>
<td>0,63</td>
<td>0,60</td>
</tr>
<tr>
<td>800,47</td>
<td>70</td>
<td>1,0</td>
<td>0,74</td>
</tr>
<tr>
<td>776,19</td>
<td>90</td>
<td>0,97</td>
<td>0,232</td>
</tr>
<tr>
<td>773,37</td>
<td>90</td>
<td>0,96</td>
<td>0,250</td>
</tr>
<tr>
<td>767,13</td>
<td>60</td>
<td>0,57</td>
<td>0,98</td>
</tr>
<tr>
<td>764,04</td>
<td>150</td>
<td>1,3</td>
<td>0,057</td>
</tr>
<tr>
<td>760,53</td>
<td>140</td>
<td>0,95</td>
<td>0,151</td>
</tr>
<tr>
<td>741,65</td>
<td>130</td>
<td>1,3</td>
<td>0,52</td>
</tr>
<tr>
<td>740,30</td>
<td>300</td>
<td>1,3</td>
<td>0,25</td>
</tr>
<tr>
<td>729,22</td>
<td>60</td>
<td>0,51</td>
<td>0,82</td>
</tr>
<tr>
<td>725,72</td>
<td>200</td>
<td>1,0</td>
<td>0,104</td>
</tr>
<tr>
<td>722,74</td>
<td>200</td>
<td>1,2</td>
<td>0,052</td>
</tr>
<tr>
<td>714,3</td>
<td>500</td>
<td>1,2</td>
<td>0,048</td>
</tr>
<tr>
<td>707,41</td>
<td>70</td>
<td>0,80</td>
<td>0,79</td>
</tr>
<tr>
<td>701,07</td>
<td>200</td>
<td>1,2</td>
<td>0,110</td>
</tr>
<tr>
<td>698,38</td>
<td>250</td>
<td>1,2</td>
<td>0,056</td>
</tr>
<tr>
<td>697,11</td>
<td>110</td>
<td>1,2</td>
<td>0,22</td>
</tr>
<tr>
<td>691,43</td>
<td>300</td>
<td>1,1</td>
<td>0,036</td>
</tr>
<tr>
<td>689,17</td>
<td>140</td>
<td>1,1</td>
<td>0,076</td>
</tr>
<tr>
<td>683,91</td>
<td>70</td>
<td>0,75</td>
<td>0,299</td>
</tr>
<tr>
<td>680,11</td>
<td>110</td>
<td>1,1</td>
<td>0,216</td>
</tr>
<tr>
<td>675,33</td>
<td>140</td>
<td>1,1</td>
<td>0,038</td>
</tr>
<tr>
<td>670,80</td>
<td>110</td>
<td>1,1</td>
<td>0,800</td>
</tr>
</tbody>
</table>
Tab. 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>374,457</td>
<td>*</td>
<td>0,25</td>
<td>0,71</td>
</tr>
<tr>
<td>377,558</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>380,659</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>383,760</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>386,861</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>389,962</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>392,063</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>395,164</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>398,265</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>401,366</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>404,467</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>407,568</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>410,669</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
</tbody>
</table>

angeregte Zustand durch die starke 104 keV-Linie entvölkert. Die hohe Population dieses Niveaus läßt vermuten, daß auch das 11/2-Niveau durch die (n,γ')-Reaktion zu finden ist. Seine Lage kann aus dem Abstand 9/2 − 7/2 zu 232 keV abgeschätzt.

Tab. 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>374,457</td>
<td>*</td>
<td>0,25</td>
<td>0,71</td>
</tr>
<tr>
<td>377,558</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>380,659</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>383,760</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>386,861</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>389,962</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>392,063</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>395,164</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>398,265</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>401,366</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>404,467</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>407,568</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
<tr>
<td>410,669</td>
<td>12</td>
<td>0,75</td>
<td>0,07</td>
</tr>
</tbody>
</table>

angeregte Zustand durch die starke 104 keV-Linie entvölkert. Die hohe Population dieses Niveaus läßt vermuten, daß auch das 11/2-Niveau durch die (n,γ')-Reaktion zu finden ist. Seine Lage kann aus dem Abstand 9/2 − 7/2 zu 232 keV abgeschätzt.
d bedeutet Doppelinordnung der Linie
Die eingetragenen Übergangsenergien sind gerundet

Abb. 2. Yb175-Niveauschema.

Aus den Niveauneigenschaften der Grb erhält man mit
$$E = E_0 + A I(I+1) + B F(I+1)^2$$
die Parameter $A = 11757.0 \pm 0.6$ eV und $B = -3531 \pm 21$ meV.

Aus dem Verzweigungsverhältnis der 126,9 und 231,5 keV-γ-Linien findet man
$$|g_K - g_R| = 0.16 \pm 0.08$$

Die $[510]$-Bande

Mit
$$E = E_0 + A I(I+1) - B [I(I+1) - 1]^{1+1/2} a(I+1/2)^2$$
erhält man $A = 11,576$ keV, $B = -5.3$ eV, $a = 0.188$.

Nach dem γ-Verzweigungsverhältnis der Intrabandübergänge aus den $5/2^-$- und $7/2^-$-Niveaus sollte die 46,7 keV-Linie 1.32%, die 95,3 keV-Linie 0.11% E2 enthalten. Daraus läßt sich der für $K = 1/2$-Banden charakteristische Parameter b_θ zu $b_\theta = 0.54 \pm 0.09$ berechnen. Unter der Annahme, daß das Quadrupolmoment in der $[510]$-Bande dem der Grb gleich, ergibt sich für die $[510]$-Struktur:

$$(g_K - g_R)^2 = 7.4 \pm 4.4,$$

Die Kenntnis von $(g_K - g_R)^2$ erlaubt die Berechnung der Gammaintensität der Linie vom $9/2^-$-zum $7/2^-$-Niveau. Man findet: $I_\gamma (84$ keV) $\approx 9 \times 10^{-5}$ Gamma-Quanten pro Neutroneneinfang, was etwa um den Faktor 2 unter unserer Nachweisgrenze liegt. Der $9/2$-Zustand kann damit als gesichert angesehen werden. In das Niveauschema wurde er aber gestrichelt eingetragen, da die Einordnung durch keinen weiteren Übergang gestützt wird.

Das Auftreten der Übergänge vom $3/2^-$-, $5/2^-$- und $7/2^-$-Niveau zur Grb ist eine Folge der Bandenmischung. Wie aus der Tab. 6 zu ersehen ist, gibt die Rechnung den Trend der gemessenen Intensitäten wieder. Jedoch liegen die berechneten Werte durchwegs unter den gemessenen, wenn man sie auf die von gleichen Niveaus ausgehenden Intrabandübergänge bezieht. Auch kann ihr Verzweigungsverhältnis nicht gut erklärt werden. Die Bandenmischungsrechnung zeigt jedoch, daß gerade die Intensität dieser Linien durch kleinste Veränderungen der Wellenfunktion in der Grb erheblich beeinflußt wird. Es ist daher im Rahmen dieser, von sehr einfachen Annahmen ausgehenden, Berechnung kaum mehr als eine großenordnungsmäßige Beschreibung zu erwarten.

Die [512↑]-Bande

Als energetisch niedrigster Lochzustand im Yb175 wird der Grundzustand des Yb173, nämlich der Nilsson-Zustand [512↑], erwartet.

Die in Abschnitt 6 beschriebene Mischungsrechnung zeigt, daß die zwischen den beiden Banden auftretende M1-Übergangswahrscheinlichkeit praktisch nur von den beigemischten Intrabandanteilen \(\Delta K = 0 \) herrührt.

Tab. 2. Berechnetes Mischungsverhältnis \(\gamma(E2)/\gamma(M1) \) für die Übergänge von der [512↑]-Bande zur Grb.

<table>
<thead>
<tr>
<th>Übergang</th>
<th>Energie/ keV</th>
<th>(\gamma)-Int. Verh.</th>
<th>Multipolarität</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2 (\rightarrow) 7/2</td>
<td>639,3</td>
<td>10</td>
<td>E2</td>
</tr>
<tr>
<td>7/2 (\rightarrow) 7/2</td>
<td>729,9</td>
<td>9,3</td>
<td>E2</td>
</tr>
<tr>
<td>7/2 (\rightarrow) 9/2</td>
<td>624,7</td>
<td>0,7</td>
<td>-</td>
</tr>
</tbody>
</table>

Interessant ist der Übergang vom 7/2-Niveau der [512↑]-Bande zum 5/2-Niveau der [510]-Bande, der wegen \(\Delta K = 2 \) nur aus der Kopplung von mindestens 3 Zuständen mit \(K = 1/2, 3/2 \) und 5/2 verstanden werden kann. Die Tatsache, daß er als

einziger beobachtbarer Übergang zwischen den beiden Banden mit der richtigen Intensität vorausgesagt wird, rechtfertigt die angestellten Mischungsrechnungen. Danach hat diese Linie überwiegend M1-Multipolarität (~96%).

Mit \(Q_0 = 7.8 \text{ barn} \) (Mittelwert \(\times 204 \text{ keV} \): \((g_K - g_R)^2 = 0.6 \pm 0.3 \), in guter Übereinstimmung mit den Werten \(0.66 \pm 0.11 \) in Yb173 \(^{20}\) und \(0.8 \pm 0.3 \) in Dy165 \(^{21}\) für diese Bande.

Die \([512\D]\)-Bande

Bei etwa 809 keV wurde von Burke et al. \(^1\) der Kopf der \([512\D]\)-Rotationsbande vorgeschlagen. Nach Rechnungen von Soloviev et al. \(^{17}\) sollte dieser Teilchenzustand eine etwa 15%ige Beimischung der \(\gamma\)-Vibration des Grundzustands enthalten. Diese Annahme wird bestätigt durch die starken zur Grb führenden E2-Übergänge, deren Intensität auch durch Bandenmischung nicht erklärt werden könnte. Die Verzweigungsverhältnisse dieser Übergänge stimmen sehr gut mit den Alaga-Regeln überein \(^{10}\).

Die Schwierigkeit \(^5\), den 871 keV-Übergang vom 5/2-Niveau zum Grundzustand intensitätsmäßig zu erklären, löste sich in dieser Messung. Wie aufgrund von Koinzidenzmessungen \(^5\) bereits vermutet, handelt es sich hierbei um ein Dublett. Kombinationen der gefundenen Linien ergeben für das \(7/2^-\) - \(5/2^-\)-Niveau eine Energie von 957.4 keV, was die früher vorgeschlagene \(^5\) Energie von 953 keV nicht bestätigt, aber gut mit dem Wert nach Burke et al. \(^{20}\) überestimmt, wenn man die sonst festgestellte systematische Energieverschiebung berücksichtigt.

Die \([514\D]\)-Bande

Mit den gefundenen Niveauenergien ist die 146,045 keV-Linie als Intrabandübergang vertraglich. Eine Abschätzung unter Verwendung des Verhältnisses \(Q_0 / (g_K - g_R) = 36 \), welches man aus den Intrabandverzweigungsverhältnissen \(^{22}\) der \([512\D]\)-Bande im W183 erhält, zeigt, daß nur ein derartig schwacher 146 keV-Übergang die Nichtbeobachtung des \(7/2^-\rightarrow 5/2^-\)-Übergangs erklärt. Aus den 3 Niveaus ergeben sich die Rotationsparameter \(A = 11844 \pm 10 \text{ eV} \) und \(B = 16.8 \pm 1.7 \text{ eV} \). Der große positive \(B\)-Parameter wird durch die Mischung der \([512\U]\), \([510]\)- und \([512\D]\)-Banden verständlich, wobei auch das höhergelegene \(K=1/2^-\)-Band in diesem speziellen Fall wegen des kleinen Energieabstandes der beiden \(5/2^-\)-Niveaus eine Vergrößerung des Abstandes \(5/2^- - 7/2^-\) bei gleichzeitiger Verminderung des \(3/2^- - 5/2^-\)-Abstands im \(K=3/2^-\)-Band bewirkt. Die Mehrbandenmischung (vgl. Abschn. 6) ergibt zwar einen zu großen positiven \(B\)-Parameter für das gestörte \(K=3/2^-\)-Band, es ist jedoch zu erwarten, daß höhergelegene nicht in der Rechnung eingeschlossene Bänder ihn verkleinern.

Von den von der \([512\D]\)-Bande ausgehenden Übergängen zur \([512\D]\)- und \([510]\)-Bande widersprechen besonders die letzteren den Alaga-Regeln. Hier konnte die Bandenmischungsrechnung eine wesentlich bessere Übereinstimmung der Verzweigungsverhältnisse mit dem experimentellen Befund erbringen, und auch die Stärke dieser Übergänge im Vergleich zur Intrabandstärke gut beschreiben (vgl. Tab. 6). Gerade die Intensitäten dieser Übergänge hängen empfindlich von den Wellenfunktionen der einzelnen Zustände ab. Eine quantitative Erklärung kann allerdings im Rahmen des recht einfachen Modells nicht erwartet werden, wurde auch nicht durch Variation der Parameter angestrebt. Die kleine Beimischung der \(\gamma\)-Vibration der \([510]\)-Struktur zur \([512\D]\)-Bande \(^{17}\) wurde in unserer Mischungsrechnung außer acht gelassen und kann ein Grund für die noch verbleibenden Abweichungen sein.

Die \([521\D]\)-Bande

Diese \(K=1/2^-\)-Bande wurde von Burke et al. \(^4\) vorgeschlagen und von Bondarenko et al. \(^5\) bestätigt. Durch die vorliegende Arbeit konnten zwei

\(^{21}\) O. W. B. Schult, B. P. Maier u. U. Gruber, Z. Phys. 182, 171 [1964].
weitere Intrabandübergänge und sämtliche mögli- lichen Übergänge zur \([510]\)-Bande beobachtet werden. Die Rotationsparameter sind: \(A = 13,830\) keV, \(B = -12,94\) eV und \(\alpha = 0,750\). Das Nilsson-Modell gibt keine befriedigende Erklärung der Übergänge zur \([510]\)-Bande. Die Diskrepanz ließ sich allerdings durch Abschwächung des berechneten Entkopplungs- termes \(b_{\text{MI}} G_{\text{MI}}\) zwischen beiden Banden wesent- lich vermindern.

Die Bandenmischung beeinflußt die Verzweigungsverhältnisse kaum. Sie vermag allerdings den ohne Mischung nicht erwarteten \(1/2 \rightarrow 5/2\) E2-Übergang quantitativ zu erklären (Tab. 6). Die Stärke der \(\Delta K = 0\)-Übergänge wird durch die Kopplung um einen Faktor \(\sim 2\) vermindert, wie der Vergleich mit den von Mischung kaum beeinflußten Intrabandübergängen zeigt (Tab. 6). Daß diese von der Rechnung zu schwach vorhergesagt werden, könnte auf ein größeres inneres Quadrupolmoment dieser Bande hindeuten.

Aus den gemessenen Intensitäten der beiden Intrabandübergänge, die vom \(7/2\)-Niveau ausgehen, läßt sich eine Aussage über die Parameter \(g_R\), \(g_K\) und \(b_0\) gewinnen, wenn man den Wert \(Q_0 \approx 8\) barn\(^{19}\) für das innere Quadrupolmoment von \(\text{Yb171}\) übernimmt:

\[
[(g_K - g_R)(1 + b_0)]^2 = 0,51 \pm 0,31 .
\]

\(^{17}\) H. R. KOCH, Z. Phys. 187, 450 [1965].

Dieser Term ist eindeutig kleiner als die Werte, die im Dy165\(^{21}\) und Er167\(^{23}\) für die \([521\downarrow]\)-Bande gefunden wurden. Auch in diesem Fall könnte die Annahme eines größeren \(Q_0\) die Diskrepanz beseitigen.

Die \([521\uparrow]\)-Bande

Die Energiedifferenz der zwei relativ starken Linien von 707 und 635 keV gleicht dem Abstand der \(1/2\)- und \(3/2\)-Niveaus in der \([521\downarrow]\)-Bande. Zusammen mit einer dritten schwächeren Linie, die zum \(5/2\)-\([521\downarrow]\)-Niveau führt, ergeben sie einen Zustand bei 1627,47 keV. Nimmt man für diesen den Spin \(3/2\) und \(K = 3/2\) an, so läßt sich die Verzweigungsverhältnisse der \(3\) Übergänge nach den Alagaregeln sehr gut mit Dipolstrahlung erklären. Das Nilsson-Modell sagt zwischen 1 und 2,5 MeV die \(K = 3/2\)-Zustände \([642\downarrow]\), \([651\uparrow]\) und \([521\uparrow]\) voraus. E1-Übergänge von den ersten beiden Zuständen zur \([521\downarrow]\)-Bande sind aufgrund der Auswahlregeln für asymptotische Quantenzahlen verboten und eine Übereinstimmung der Verzweigungsverhältnisse mit den Alagaregeln ist demnach sehr unwahrscheinlich\(^{24}\). Dagegen sind M1-Übergänge vom \(3/2\)-\([521\uparrow]\)-Zustand aus erlaubt. Burke et al. schlagen diesen Zustand bei 1616 keV vor. Trotz der großen Energiediskrepanz scheint es sich doch um dasselbe Niveau zu handeln, zumal der energetische Unterschied zwischen den beiden Messungen nach oben hin zunimmt\(^{15}\). Überraschend ist, daß die \([521\uparrow]\)-Bande wesentlich niedriger liegt als nach dem Nilsson-Modell erwartet (~2,5 MeV). Der Grund hierfür ist die Beimischung der \(\gamma\)-Vibration der \([521\downarrow]\)-Struktur. SOLOVIEV\(^{17}\) gibt als Konfiguration

\[
[521\uparrow] \ 20\% + \{[521\downarrow] + Q(22)\} \ 80\%
\]

und als Lage 1,7 MeV an.

Aufgrund der \(\gamma\)-Vibrationsbeimischung sollten kollektive E2-Übergänge zwischen den beiden Banden zur Depopulation beitragen. Setzt man jedoch in einer Weißkopfabschätzung für den kollektiven Charakter einen beschleunigenden Faktor von etwa 10 an und schwächt die M1-Stärke auf 20% ab (Partikelanteil des Ausgangszustands), so überwiegt diese trotzdem mit einem Faktor von etwa 100. Zudem ist das M1-Übergangs- matrixelement

\(^{24}\) Yu. T. GRIN u. I. M. PAVLICHENKOV, Nucl. Phys. 65, 686 [1965].

Das 5/2-Rotationsniveau bei 1689,46 keV folgt aus der Kombination zweier Linien, zum 3/2- und 5/2-Term der $[521\downarrow]$-Bande. Aufgrund der vernachlässigbaren Störung durch Bandenmischung erfüllt das Verzweigungsverhältnis dieser Übergänge bei Annahme von M1-Multipolarität sehr gut die Alaga-Regeln.

$$V = \frac{|\langle M1, [521\uparrow] | [521\downarrow] \rangle|^2}{|\langle M1, [521\uparrow] | [512\uparrow] \rangle|^2} = 10,8 \pm 2,2.$$

Es überrascht nicht, daß das Nilsson-Modell, welches bei der Vorhersage der Anregungsentnergie für den $K = 3/2$-Zustand versagte, auch dieses Verhältnis nicht richtig wiedergibt.

Die 3/2$^+$-Bande bei 1067 keV

Diese Übergänge veranlaßen Bondarenko et al.5, das 1067 keV-Niveau in dieser Weise zu interpretieren, zumal der intensive 428 keV-E1-Übergang in Koinzidenz mit der 639 keV-Linie vom 5/2-$[512\uparrow]$-Niveau zum Grundzustand gefunden wurde5, was sich einfach aus der 3-Quasiteilchenstruktur erklären läßt. Bondarenko et al.5 erwähnten als Einteilchenkomponente des 1067 keV-Terms die $[642\downarrow]$-Struktur, welche nach den Messungen von Funke et al.6, die keinen β-Übergang vom $[411\downarrow]$-Grundzustand des Tm175 zum 1067 keV-Niveau fanden, allerdings ziemlich klein sein sollte. β-Übergänge zur 3-Quasiteilchenkonfiguration $[624\uparrow]_n - [512\uparrow]_n - [514\uparrow]_n$, die die Hauptkomponente der Oktupolvibration darstellt, sind vom $[411\downarrow]$-Tm175-Grundzustand verboten. Die in der vorliegenden Messung neu gefundenen starken Übergänge zu den 1/2-, 3/2- und 5/2-Niveaus der $[510]$-Bande lassen sich nicht aus der Annahme einer reinen 3-Quasiteilchenstruktur erklären. Der von Bondarenko et al.5 eingeordnete Grundzustandsübergang wurde nicht bestätigt. Seine Intensität ist mindestens um den Faktor 5 kleiner als früher5 angegeben.

Durch Einordnung von 69 und 163 keV-Intra- und bandübergängen waren Rotationsniveaus bei 1136 und 1229 keV vorgeschlagen worden.5 Nach der Kristallspektrometermessung ist aber die 69 keV-Linie (5/2 → 3/2), mindestens 40-mal schwächer als von Bandarenko et al. angegeben, und die 163 keV-Linie (7/2 → 3/2) depopuliert das 267,5 keV-Niveau.

Die $(n\gamma)$-Daten weisen jedoch durch intensive Übergänge zu den $[512\uparrow]$- und $[510]$-Banden auf Zustände bei 1121 und 1197 keV als wahrscheinliche 5/2- und 7/2-Rotationsniveaus hin. Auch werden dadurch die beobachteten Populationen gut erklärt. Hinsichtlich der Rotationsparameter $A = 10,859$ keV, $B = 13,46$ eV fällt der positive B-Parameter auf, der durch Kopplung mit tiefer liegenden Zuständen nicht erklärt werden kann. Im vorliegenden Fall liegen nämlich unter der $K = 3/2^+$-Bande nur ein $K = 7/2^+$- und ein $K = 9/2^+$-Zustand, welche nicht direkt beimischen. Somit bleibt nur die Möglichkeit den positiven B-Parameter durch Mischung
mit der etwa 300 keV höherliegenden \(K = 1/2^+ \)-Bande zu erklären, deren starke Verzerrung dazu führt, daß der Abstand zwischen den beiden 5/2-Niveaus wesentlich kleiner ist als die Abstände der 3/2- und 7/2-Niveaus. Gerade dies jedoch führt auf Grund der stärkeren relativen Depression des 5/2-Niveaus in der \(K = 3/2^+ \)-Bande zum gemessenen Befund.

Eine Stütze für die Richtigkeit dieser Interpretation liefern auch die von der \(K = 1/2^+ \)-Bande in die betrachtete Bande führenden Übergänge, deren Verzweigungsverhältnisse gut erklärt werden können (Tab. 4).

Die hier angestellten Überlegungen zur Struktur des \(K = 3/2^+\)-Zustandes können eine noch komplexere Konfiguration nicht ausschließen. Dies läßt einen quantitativen Erklärungsversuch für die im Rahmen von Bandenmischung sehr empfindlichen \(E1\)-Übergänge zur \([510\dagger] \), \([512\dagger] \) - und \([512\dagger\dagger] \)-Banden wenig sinnvoll erscheinen. Die Verzwiegungsverhältnisse für diese Übergänge zeigen größtenteils starke Abweichungen von den Alaga-Regeln. Das Auftreten der schwachen 111,9 keV-Linie vom \(5/2^-\)-Niveau zum \(5/2^-\)-Niveau in der \([521\dagger\dagger] \)-Bande zeigt beim Vergleich mit Übergängen zur \([510] \)-Bande, daß die \(E1\)-Übergangsstärke zur ersten Bande wesentlich stärker ist. Schreibt man diese der \([642\dagger\dagger] \)-Komponente in der \(K = 3/2^+ \)-Bande zu, so erscheint der Befund aufgrund der geringeren asymptotischen Verbotenheit der \([642\dagger\dagger] \rightarrow [521\dagger\dagger] \)-\(E1\)-Übergänge plausibel.

Die Tatsache, daß in der \(K = 3/2^+ \)-Bande keine Intrabandübergänge beobachtet wurden, ist auf die \(E1\)-Übergänge zurückzuführen, mit denen sie konkurrenzen müssen. Bei Annahme eines Hinderungsfaktors von \(<10^5\) für die \(E1\)-Übergänge liegt der kollektive \(E2\)-Übergang \(7/2^-\rightarrow 3/2^-\) unter der Nachweisgrenze. Ähnliches gilt für die beiden möglichen \((\Delta I = 1\)\)-Übergänge, von denen zudem der \(5/2^-\rightarrow 3/2^-\)-Übergang in der Flanke einer Röntgen-Linie liegt, was den Nachweis erschwert.

Die \([651\dagger] \)-Bande

Der \([651\dagger] \)-Zustand wurde bisher noch in keinem Kern eindeutig identifiziert und wird nach dem Nilsson-Modell im Ybl175 bei etwa 1540 keV erwarten. SOLOVIEV et al.\(^4\) geben für diesen Zustand eine Anregungsentnergie von 1500 keV und die Struktur \(80\% [651\dagger] + 16\% [651\dagger] + Q_{29} + \ldots\) an. Die Nilsson-Modellrechnung ergab einen Entkoppelungsparameter von etwa 4, was bedeutet, daß diese Bande nicht die normale Spinfolge zeigt. BURKE et al.\(^4\) konnten durch ihre Messungen diese Bande nicht identifizieren, wohl aber eine Reihe von nicht zugeordneten Niveaus zwischen 1300 und 1700 keV beobachten. WHINERAY et al.\(^26\) untersuchten in Anlehnung an Burkes Messung den betreffenden Bereich mit verbesserter Auflösung und fanden in der \((d,p)\)-Reaktion die im Auszug in Tab. 3 angegebenen Niveaus. Unter der Annahme eines Entkoppelungs-

\(^{26}\) S. WHINERAY, F. S. DIETRICH u. R. B. STOKSTAD, erscheint in Nucl. Phys.

Es erhebt sich die Frage, ob diese Zuordnung mit den gemessenen Wirkungskernschnitten in der (d,p)-Reaktion verträglich ist. Tab. 3 zeigt eine Gegenüberstellung der Meßwerte mit den theoretischen Wirkungskernschnitten für die Mitglieder dieser Rotationsbande, einmal nach dem ursprünglichen von Nilsson vorgeschlagenen Modell und nach dem verfeinerten Nilsson-Modell (Nilsson et al. 28). Die theoretischen Werte werden offensichtlich stark vom zugrundeliegenden Modell beeinflußt. Die quantitative Übereinstimmung mit den Meßwerten ist in keinem der beiden Fälle sehr gut. Das 5/2-Niveau wird jedoch in jedem Fall am stärksten populiert, was der vorgeschlagenen Zuordnung entspricht. Aus der Tab. 3 geht hervor, daß auch das 9/2-Niveau in der (d,p)-Reaktion stark populiert sein sollte. Dieser Zustand kann zwar in der (n,γ)-Reaktion nicht mehr beobachtet werden, jedoch ist es möglich, seine Anregungsenergie aus den 3 gefundenen Niveaus zu berechnen. Unter Einschluß der Coriolis-Mischung mit der bei 1937 keV liegenden $[642\downarrow]$-Bande, mit welcher die $[651\downarrow]$-Bande wegen der Abstammung aus der gleichen Drehimpulsschale $g/2$ durch ein außerordentlich hohes Mischungsmatrixelement ($A_{K,\text{theor}} = 56$ keV, $A_{K,\text{exp}} = 50,6$ keV) verbunden ist, findet man einen Wert von 1462,2 keV, welcher gut dem stark populierten (d,p)-Niveau bei 1456,3 keV entspricht.

Das bei 1605 keV gemessene (d,p)-Niveau läßt sich hinsichtlich des Wirkungskernschnitts als das bei ~ 1615 keV berechnete 7/2-Niveau deuten.

Tab. 3. Vergleich der theoretischen und experimentellen (d,p)-Wirkungskernschnitte. Die Werte beziehen sich auf die Spinzuordnung in Spalte 1. Die (n,γ)-Energien von 1615 und 1622,2 keV sind berechnete Werte.

<table>
<thead>
<tr>
<th>Spin</th>
<th>Energie $(d,p)/ \text{keV}$</th>
<th>Energie $(n,\gamma)/ \text{keV}$</th>
<th>$\frac{d^2\sigma}{d\Omega}$ für 90°/$\mu b/\text{sr}$</th>
<th>exp.</th>
<th>Zuordnung nach Whineary et al.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1353,6 1356,5</td>
<td>137</td>
<td>235</td>
<td>3/2</td>
<td>[501$^+$]</td>
</tr>
<tr>
<td>3/2</td>
<td>1464 1468,9</td>
<td>143</td>
<td>100</td>
<td>7/2</td>
<td>[651$^\downarrow$]</td>
</tr>
<tr>
<td>5/2</td>
<td>1365,7 1368,1</td>
<td>182</td>
<td>496</td>
<td>(1/2 + 3/2)[651$^\downarrow$]</td>
<td></td>
</tr>
<tr>
<td>7/2</td>
<td>1605 1615</td>
<td>77</td>
<td>29</td>
<td>5/2</td>
<td>[651$^\downarrow$]</td>
</tr>
<tr>
<td>9/2</td>
<td>1456,3 1462,2</td>
<td>20</td>
<td>143</td>
<td>9/2</td>
<td>[651$^\downarrow$]</td>
</tr>
</tbody>
</table>

DAS KERNNIVEAUSchema VON Yb 175 383

1698.9 7/2 ■
7/2 1615.8
1543.4 9/2-
1485.1 3/2-
3/2 1468.2 1468.9
9/2 ...

Abb. 3. Niveauverschiebung durch Coriolis-Mischung im K = 1/2⁺-Band.

Tab. 4. Verzweigungsverhältnisse zwischen der [651]⁻⁻-Bande und der K = 3/2⁺-Bande bei 1067 keV.

<table>
<thead>
<tr>
<th>Verzweigung</th>
<th>Experiment</th>
<th>o. Misch.</th>
<th>m. Misch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2⁻ → 3/2⁺</td>
<td>12 ± 4</td>
<td>∞</td>
<td>36</td>
</tr>
<tr>
<td>1/2⁻ → 5/2⁻</td>
<td>> 2</td>
<td>1</td>
<td>4,4</td>
</tr>
<tr>
<td>3/2⁻ → 3/2⁺</td>
<td>> 2</td>
<td>∞</td>
<td>6,3</td>
</tr>
<tr>
<td>3/2⁻ → 5/2⁻</td>
<td>0,39 ± 0,13</td>
<td>0,28</td>
<td>0,35</td>
</tr>
<tr>
<td>5/2⁻ → 5/2⁻</td>
<td>8,1 ± 2,4</td>
<td>2,9</td>
<td>10</td>
</tr>
<tr>
<td>5/2⁻ → 7/2⁻</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aus der Intensität der Intrabandübergänge lassen sich die Hinderungsfaktoren für die E1-Übergänge zu \(10^{4} \)–\(10^{5} \) abschätzen, was nach PERDRISAT und LÖBNER zu erwarten ist. Das Intensitätsverhältnis der beiden Intrabandübergänge wird sehr gut von der oben beschriebenen Berechnung erklärt: \(\left(I_{1/2⁺ → 5/2⁻}/I_{1/2⁻ → 3/2⁺}\right)_{\text{exp}} = 4,0 ± 1,2 \approx 4,5 \) (theor. Verhältnis).

29 C. F. PERDRISAT, Rev. Mod. Phys. 38, 41 [1966].
Die \([642\downarrow]\)-Bande

Das 1937 keV-Niveau wird durch einen intensiven Übergang von 3885 keV direkt vom Compoundzustand aus bevölkert\(^5\). Unter der Annahme von Dipolstrahlung erhält man den Spin 1/2 oder 3/2. In der vorliegenden Messung wurde die 871 keV-Linie, die in Koinzidenz mit dem 428 keV-Übergang vom 1067 keV-Niveau zum 5/2-Niveau der \([512\uparrow]\)-Bande beobachtet wurde, als Dublett aufgelöst, dessen 871,7 keV-Übergang vom 5/2 \([512\downarrow]\)-Niveau zum Grundzustand und dessen 869,7 keV-Komponenten vom 1937 keV-Term zum 1067 keV-Niveau führt. Von zwei weiteren Übergängen, die zum 5/2- und 7/2-Niveau der \(K=3/2^+\)-Bande bei 1067 keV führen, spricht der letztere für den Spin 3/2\(^+\), was mit E2-Charakter für diese Linie verträglich ist. Die direkte Population dieses Niveaus vom 1/2\(^+\)-Compoundzustand aus durch einen starken M1-Übergang ist nach PORTER & THOMAS\(^3\) verständlich. Nach dem Nilsson-Modell (Fig. 4) erwartet man bei \(\sim 2\) MeV die \([651\downarrow]\)- und \([642\downarrow]\)-Zustände, wobei die \([642\downarrow]\)-Struktur im Rahmen der Bandenmischung gut die Energieverhältnisse in der \(K=1/2^+\)-Bande erklärt. Ferner erklärt die Zuordnung \([642\downarrow]\) die hohe E2-Übergangswahrscheinlichkeit zur \(K=3/2^+\)-Bande bei 1067 keV, welche etwa 10\% dieses Nilsson-Zustandes enthält. Intrabandübergänge sind i. allg. wenig beeinflußt von Bandenmischung, sofern beigemischte Intrabandanteile anderer Banden klein sind, wie im vorliegenden Fall der \(K=1/2^+\)-Anteil. Da Übergänge vom Einteilchenzustand zur 3-Quasiteilchenkomponente in der \(K=3/2^+\)-Bande verboten sind, ist keine Störung zu erwarten. Deshalb gehörten die Übergänge vom Einteilchenzustand zur 3-Quasiteilchenkomponente in der \(K=3/2^+\)-Bande verboten sind, ist keine Störung zu erwarten. Deshalb gehörten die Übergänge vom Einteilchenzustand zur 3-Quasiteilchenkomponente in der \(K=3/2^+\)-Bande verboten sind, ist keine Störung zu erwarten. Deshalb gehörten die Übergänge vom Einteilchenzustand zu den 3/2-, 5/2- und 7/2-Niveaus den Alaga-Regeln. 740,3 keV E2-Übergang erlaubt die Bestimmung der M1/E2-Mischung in den beiden anderen Linien. Die daraus gewonnenen quadratischen Verhältnisse der Übergangs-\(\mathcal{M}(M_1)^2/\mathcal{M}(E2)^2\) stimmen ausreichend miteinander überein\(^10\).

Die El-Übergänge zu den \([521\downarrow]\)- und \([521\downarrow]\)-Banden gehörten der Alaga-Regel nicht, da auch für diese Übergänge ein starker Einfluß der Bandenmischung zu erwarten ist. Für den Übergang vom 1937 keV-Term zum 3/2-Niveau in der \([521\downarrow]\)-Bande wurde durch Intensitätsvergleich mit der rei nen E2-Linie zum 7/2-Niveau in der \(K=3/2^+\)-Bande der Hintergrundsfaktor berechnet. Der Wert von \(\approx 3 \times 10^3\) ist klein im Vergleich zu den sonst für u.g.-bzw. g-Kerne im Bereich um \(A=175\) gefunden, was wahrscheinlich auf die geringe Verbotenheit aufgrund der asymptotischen Quantenzahlen außerdem durch den größeren Energieabstand be vorzugt sind.

Einer genaueren Berechnung der Übergangsstärken vom \([642\downarrow]\)-Zustand aus, die in ähnlicher Weise wie für die Bänder negativer Parität durchgeführt wurde, standen Unsicherheitsfaktoren im Wege, wie der nur näherungsweise bekannte \([642\downarrow]\)-Anteil in der \(K=3/2^+\)-Bande, die nicht genau bekannte Reinheit des hochliegenden Ausgangszustands und die Ungenauigkeit der aus dem Nilssonmodell bestimmten M1-Übergangsmatrixelemente. Obgleich die Rechnung deshalb mehr qualitativen Charakter hat, kann sie doch die experimentellen Intensitäten recht befriedigend erklären\(^10\). Die mittels des reinen E2-Übergangs zwischen den 1937 keV- und 1197 keV-Niveaus an die gemessenen Intensitäten angeschlossen (E2 + M1)-Übergangsstärken lassen erkennen, daß wirklich nur der gefundene Übergang zwischen dem 3/2 \([642\downarrow]\)- und 5/2 \([651\downarrow]\)-Zustand beobachtbar sein sollte.

Eicht man die von dem gefundenen Niveau ausgehenden berechneten Übergänge zur \(K=3/2^+\) und \(K=1/2^+\)-Bande mit der 947 keV-Linie, so findet man, daß unter Berücksichtigung eines theoretischen Fehlers von etwa 50\% alle anderen \(\gamma\)-Linien, auch der \(5/2\rightarrow 3/2\)-Übergang innerhalb der \([642\downarrow]\)-Bande, unter der Nachweisgrenze liegen, wie das Experiment bestätigt.

Die \(E1\)-Übergänge zu den \([521\downarrow]\)- und \([521\downarrow]\)-Banden gehörten der Alaga-Regel nicht, da auch für diese Übergänge ein starker Einfluß der Bandenmischung zu erwarten ist. Für den Übergang vom 1937 keV-Term zum 3/2-Niveau in der \([521\downarrow]\)-Bande wurde durch Intensitätsvergleich mit der reinen E2-Linie zum 7/2-Niveau in der \(K=3/2^+\)-Bande der Hintergrundsfaktor berechnet. Der Wert von \(\approx 3 \times 10^3\) ist klein im Vergleich zu den sonst für u.g.-bzw. g-Kerne im Bereich um \(A=175\) gefunden, was wahrscheinlich auf die geringe Verbotenheit aufgrund der asymptotischen Quantenzahlen aus. D. BREITIG

für E1-Übergänge zwischen dem [642\downarrow] und dem [521\uparrow]-Zustand zurückzuführen ist. Im selben Grad verboten sind die schwachen E1-Übergänge zur [521\uparrow]-Bande, für welche sich auch etwa der selbe Hinderungsfaktor ergibt. Dies läßt verstehen, warum zu diesem Band keine Übergänge mehr vom 5/2-Niveau der [642\downarrow]-Bande aus beobachtet werden.

Die [624\uparrow]-Bande

Das experimentelle Verzweigungsverhältnis der beiden Übergänge \(I_\gamma(9/2^+ \rightarrow 7/2^-)/I_\gamma(9/2^+ \rightarrow 9/2^-) = 0,58 \pm 0,08 \) widerspricht kraft der Alaga-Regel \((\lambda = 19,4)\). Das überrascht jedoch nicht, da gerade für E1-Strahlung bei \(\Delta K = \pm 1 \) die Alaga-Regeln oft bis um 3 Größenordnungen verletzt werden. Im Hf177 fanden Bernthal und Rasmussen bei den dort bis zum Spin 21/2 populierten [514\downarrow]- und [624\uparrow]-Banden ähnlich große Abweichungen für die analogen Übergänge.

Das 11/2-Niveau kommt auf den 7/2- bzw. dem 9/2-Niveau der Grb erlauben den beiden Übergängen bei 384,76 keV vorgeschlagen. Wie von Mottelson am Beispiel des Hf177 und von Kurcewicz et al. im Yb173 erfolgreich bewiesen, können bereits durch Einführung eines in erster Ordnung von \(\lambda \) abhängigen Terms für Coriolis-Beimischungen die Verzweigungsverhältnisse derartiger (\(\Delta K = 1 \)) E1-Übergänge gut beschrieben werden. Der zuerst von Michailov angegebenen Formel:

\[
B(L, I_\gamma \rightarrow I_\gamma) = \langle L | K_I K_I - K_I | I_\gamma \rangle I_\gamma > 2M^2 \\
\cdot \{ 1 + [I_\gamma(I_\gamma + 1) - I(I + 1)] \} \alpha^2,
\]

die nur gilt für \(|K_I - K_I| = L \) und \(K_I K_\gamma \neq 1/2 \), ist lediglich ein Parameter α zu bestimmen. Im vorliegenden Fall zeigt sich, daß bei Verwendung von \(\alpha = 0,131 \) sowohl das Verzweigungsverhältnis der B1-Übergänge vom 9/2^-Niveau aus als auch innerhalb des Fehlers die Nichteobachtung des 11/2^-Übergangs erklärt werden kann.

Aus dem durch die beiden gefundenen Niveaus gegebenen Rotationsparameter \(A = 10,66 \) keV kann die Lage des 13/2-Niveaus zu E(13/2) = 523,3 keV berechnet werden. In der (d,p)-Reaktion wurde es bei 516 keV gefunden, allerdings nicht aufgelöst vom 1/2 [510]-Niveau. Bedenkt man, daß das 13/2-Niveau durch die Mischung mit den höherliegenden Banden [633\uparrow] und [615\uparrow], die ebenfalls aus der i 13/2-Schale stammen, ziemlich stark herabgedrückt wird (negativer \(\beta \)-Parameter), so ist die Übereinstimmung gut.

Das [633\uparrow]-Niveau

Erklärung für den positiven B-Parameter liefern, der zur Beschreibung des $13/2$-Niveaus dieser Bande notwendig ist.

Nach der Systematik 24 sollten die $\Delta K = 0$-Übergänge zur Grb trotz der Verbotenheit durch asymptotische Quantenzahlen keine großen Abweichungen von den Alaga-Regeln zeigen. Die Diskrepanz beträgt hier auch nur 10 einen Faktor 2, was bedingt ist durch die weit größeren 1-E-Δ-Übergangsmatrixelemente für $(\Delta K = 0)$-E1-Linien, die weniger gegen Mischung empfindlich sind als die Matrixelemente für $(\Delta K = \pm 1)$-E-Δ-Übergänge.

Das 1497 keV-Niveau

Durch die (n,γ)-Messung wird der von W i e n 3 und F u n k e et al. 6 gefundene Zustand bestätigt 10. Der kleine log μ-Wert (5) legt es nahe, das Niveau als 3-Quasiteilchenzustand \([\{411\downarrow\}_{p} + [514\uparrow]_{p} - [514\downarrow]_{n}\)] zu interpretieren.

5. Vergleich des Niveauschemas mit dem Nilsson-Modell

Zu einer Berechnung der Einteilchenzustände in Yb175 wurde nach N i l s s o n et al. 28 von einem Potential der Form

\[V = \frac{1}{2} \hbar \omega \gamma^2 (1 - \frac{3}{2} \epsilon_2 P_2 + 2 \epsilon_4 P_4) - \hbar \omega_p \gamma (2 l s + \mu (l^2 - <l^2_{\text{shell}}>)) \]

ausgegangen. Die Parameter γ und μ wurden zu 0,0636 bzw. 0,393 angenommen 28. Optimale Übereinstimmung mit dem Experiment ergab sich für $\epsilon_2 = 0,25$ und $\epsilon_4 = 0,05$.

Zur Berechnung stand ein Programm von Nilsson 36 zur Verfügung, welches sowohl die Energien als auch die Wellenfunktionen sämtlicher Einteilchenzustände ermittelt.

Aus den Einteilchenenergien ε_ν wurden unter Bérechnung der Paarungseffekte die Anregungsenergien E_ν berechnet:

\[E_\nu \approx V(\varepsilon_\nu - \lambda)^2 + \Delta^2 - \Lambda. \]

Die Fermi-Fläche λ wurde so gewählt, daß die Lage von Teilchen- und Lochzuständen zueinander möglichst gut mit dem Experiment übereinstimmt. Als Energielücke Λ wurde ein Wert von 600 keV angenommen, der sich aus der Massendifferenz von geraden zu ungeraden Kernen ergibt16. Das so berechnete Niveauschema (Abb. 4) zeigt für die unter 1 MeV liegenden Zustände negativer Parität ausgezeichnete Übereinstimmung mit dem Experiment. Die starke Coriolis-Mischung zwischen den Zuständen der $i\ 13/2$-Drehimpulsschale ist vermutlich die Ursache für die schlechtere Anpassung der Zustände \([624\uparrow]\) und \([633\uparrow]\). Bei höheren Anregungsergien ist keine so gute Beschreibung durch das Nilsson-Modell zu erwarten, da hier kaum noch reine Einteilchenzustände vorliegen. Ein Beispiel hierfür ist der \([521\uparrow]\)-Zustand der zu γ-Vibrationsbeimischung enthält.

Eine theoretische Erklärung der Einteilchenzustände in Yb175 wurde auch von Chasman 37 gegeben, der in seiner Betrachtung jedoch von den gemessenen Niveauniveaus ausgeht und daraus im

36 B. Nilsson, "ε_ν-Program", Programmbibliothek d. NBI Kopenhagen, unveröffentlicht.

37 R. R. Chasman, Nucl. Phys. 89, 11 [1966].
Rahmen der Paarungstheorie einen Satz von Ein-
teilchenzuständen entwickelt. Dieser stimmt gut mit
dem gemäß der obigen Rechnung aus dem Nilsson-
Modell bestimmten überein.

6. Bandenmischungsrechnung für die Zustände
negativer Parität

In Yb_175 liegen im Energiebereich von 500 bis
900 keV vier Nilsson-Zustände negativer Parität
mit K-Zahlen von 1/2 bis 5/2. Verschiedene experi-
mentelle Anzeichen, wie das Auftreten eines posi-
tiven B-Parameters und schlechte Übereinstimmung
der Verzweigungsverhältnisse mit den Alaga-Regeln
für Übergänge zwischen den Bändern, deuten
darauf hin, daß diese Zustände aufgrund der Rotations-
Teilchen-Wechselwirkung miteinander mischen.
Daher wurde in einer Mehrbandenmischungsrech-
nung^{10} versucht, sowohl die Niveauenergien als
auch die M1- und E2-Übergangswahrscheinlichkeiten
erklären zu lassen. Die Rechnungen wurden nur die
[510], [521], [512], [514] und [514]
Banden einbezogen, nachdem der Rechnungsgang
gezeigt hatte, daß der Einfluß von anderen, auch
experimentell nicht beobachteten Zuständen in guter
Näherung vernachlässigbar war. Auf der Grundlage
des Nilsson-Modells wurde die Energiediagonalisie-
rung durchgeführt, wobei die Kopplungsmatrizele-
mente aus den mit einem Faktor 0,8 (Erfahrungswert^{38})
abgeschwächten Wellenfunktionen berechnet und mit
den entsprechenden Pairingfaktoren versehen wurden. Die ungestörten Bandenkopfener-
gien, Rotations- und Entkopplungsparameter wur-
den so gewählt, daß die Energieanpassung optimal
war. Die Tab. 5 zeigt die Ergebnisse.

Die aus der Diagonalisierung gewonnenen Mi-
schungsamplituden wurden zur Bestimmung der
M1- und E2-Übergangswahrscheinlichkeiten verwendet,
wobei vereinfachend die E2-Übergangswahr-
scheinlichkeit zwischen Einteilchenzuständen zu 0
angenommen und ein einheitliches inneres Quadru-
polmoment $Q_0 = 7,55 \text{ e cm}^{-2}$ gewählt wurde. Die
ungestörten M1-Matricielemente wurden aus den
Nilsson-Wellenfunktionen berechnet unter der An-
nahme^{39} von $g_s = 0,3$. Auch der Einfluß von g_s
war untersucht^{10}. Die berechneten Übergangs-
wahrscheinlichkeiten ließen an einigen Stellen die
Änderung von M1-Matrixelementen notwendig er-
scheinen, wo die experimentellen Daten, trotz eines
erwiesenen kleinen Mischungseinfusses, deutliche
Diskrepanzen zum Nilsson-Modell zeigten. Von
13 Parametern wurden dazu nur 4 abgeändert.
Damit ist sichergestellt, daß die Zahl der angepaß-

<table>
<thead>
<tr>
<th>Zustand</th>
<th>K</th>
<th>I</th>
<th>gemessen</th>
<th>Energie [keV]</th>
<th>Mischungsamplituden</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2</td>
<td>7/2</td>
<td>0</td>
<td>0</td>
<td>4,55</td>
<td>-0,0004</td>
</tr>
<tr>
<td></td>
<td>9/2</td>
<td>104,53</td>
<td>104,53</td>
<td>114,89</td>
<td>-0,0010</td>
</tr>
<tr>
<td></td>
<td>11/2</td>
<td>231,50</td>
<td>232,33</td>
<td>249,75</td>
<td>-0,0018</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>514,87</td>
<td>514,82</td>
<td>515,14</td>
<td>0,9996</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>558,08</td>
<td>555,98</td>
<td>558,16</td>
<td>-0,9971</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>602,83</td>
<td>602,20</td>
<td>607,46</td>
<td>-0,9928</td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>688,11</td>
<td>688,85</td>
<td>707,83</td>
<td>-0,9871</td>
</tr>
<tr>
<td></td>
<td>9/2</td>
<td>782,23</td>
<td>782,52</td>
<td>796,59</td>
<td>-0,9815</td>
</tr>
<tr>
<td>5/2</td>
<td>5/2</td>
<td>639,25</td>
<td>639,21</td>
<td>644,12</td>
<td>0,0304</td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>729,21</td>
<td>729,23</td>
<td>741,28</td>
<td>-0,0680</td>
</tr>
<tr>
<td></td>
<td>9/2</td>
<td>844,18</td>
<td>844,53</td>
<td>866,20</td>
<td>-0,0567</td>
</tr>
<tr>
<td>3/2</td>
<td>3/2</td>
<td>811,42</td>
<td>811,39</td>
<td>812,47</td>
<td>0,0350</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>871,69</td>
<td>871,41</td>
<td>877,47</td>
<td>0,0637</td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>957,47</td>
<td>959,06</td>
<td>968,47</td>
<td>-0,0965</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>920,03</td>
<td>919,95</td>
<td>919,75</td>
<td>-0,0240</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>992,26</td>
<td>992,06</td>
<td>989,47</td>
<td>-0,0500</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>1009,38</td>
<td>1009,31</td>
<td>1000,27</td>
<td>-0,0967</td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>1174,76</td>
<td>1174,32</td>
<td>1162,95</td>
<td>0,1095</td>
</tr>
</tbody>
</table>

P. Kleinheinz, private Mitteilung.

<table>
<thead>
<tr>
<th>Ausgangsniveau $I_1[N_n \lambda \Sigma]$</th>
<th>Endniveau $I_2[N_n' \lambda \Sigma']$</th>
<th>Gamma-Intensitätsverhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>experim.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o. Misch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m. Misch.</td>
</tr>
<tr>
<td>1/2 [521]</td>
<td>3/2 [510]</td>
<td>19,5 ± 3,0</td>
</tr>
<tr>
<td>1/2 [521]</td>
<td>1/2 [510]</td>
<td>0,0070 ± 0,0016</td>
</tr>
<tr>
<td>1/2 [521]</td>
<td>5/2 [510]</td>
<td>0,67 ± 0,10</td>
</tr>
<tr>
<td>3/2 [521]</td>
<td>3/2 [510]</td>
<td>0,063 ± 0,010</td>
</tr>
<tr>
<td>3/2 [521]</td>
<td>3/2 [510]</td>
<td>8,6 ± 1,6</td>
</tr>
<tr>
<td>5/2 [521]</td>
<td>5/2 [510]</td>
<td>2,24 ± 0,31</td>
</tr>
<tr>
<td>5/2 [521]</td>
<td>7/2 [510]</td>
<td>0,32 ± 0,08</td>
</tr>
<tr>
<td>7/2 [521]</td>
<td>5/2 [510]</td>
<td>0,60 ± 0,16</td>
</tr>
<tr>
<td>3/2 [512]</td>
<td>3/2 [512]</td>
<td>0,110 ± 0,027</td>
</tr>
<tr>
<td>3/2 [512]</td>
<td>5/2 [510]</td>
<td>0,28 ± 0,10</td>
</tr>
<tr>
<td>3/2 [521]</td>
<td>1/2 [521]</td>
<td>0,012 ± 0,005</td>
</tr>
<tr>
<td>5/2 [521]</td>
<td>7/2 [510]</td>
<td>0,60 ± 0,18</td>
</tr>
<tr>
<td>7/2 [521]</td>
<td>7/2 [510]</td>
<td>0,33 ± 0,08</td>
</tr>
<tr>
<td>7/2 [521]</td>
<td>9/2 [514]</td>
<td>0,35 ± 0,05</td>
</tr>
<tr>
<td>7/2 [514]</td>
<td>7/2 [514]</td>
<td>0,21 ± 0,04</td>
</tr>
<tr>
<td>7/2 [514]</td>
<td>11/2 [514]</td>
<td>0,82 ± 0,25</td>
</tr>
<tr>
<td>9/2 [514]</td>
<td>7/2 [514]</td>
<td>* > 0,5</td>
</tr>
<tr>
<td>9/2 [514]</td>
<td>11/1 [514]</td>
<td>* > 0,7</td>
</tr>
<tr>
<td>7/2 [512]</td>
<td>5/2 [512]</td>
<td>30 ± 12</td>
</tr>
<tr>
<td>7/2 [512]</td>
<td>5/2 [510]</td>
<td>0,52 ± 0,17</td>
</tr>
<tr>
<td>9/2 [512]</td>
<td>11/2 [514]</td>
<td>* 0,15</td>
</tr>
<tr>
<td>9/2 [512]</td>
<td>7/2 [514]</td>
<td>3,8 ± 1,9</td>
</tr>
</tbody>
</table>
Tab. 6.

<table>
<thead>
<tr>
<th>Ausgangsniveau $I_{1}[N_{22},\Sigma_{1}]$</th>
<th>Endniveau $I_{1}[N_{22},\Sigma_{1}]$</th>
<th>Gamma-Intensitätsverhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>experim.</td>
</tr>
<tr>
<td>$3/2$ [512[]</td>
<td>$5/2$ [510]</td>
<td>2,4 \pm 0,9</td>
</tr>
<tr>
<td>$3/2$ [512[]</td>
<td>$1/2$ [510]</td>
<td>$0,27 \pm 0,04$</td>
</tr>
<tr>
<td>$3/2$ [510]</td>
<td>$3/2$ [510]</td>
<td>$0,36 \pm 0,10$</td>
</tr>
<tr>
<td>$7/2$ [510]</td>
<td>$7/2$ [510]</td>
<td>$4,0 \pm 1,0$</td>
</tr>
<tr>
<td>$7/2$ [510]</td>
<td>$3/2$ [510]</td>
<td>≥ 5</td>
</tr>
<tr>
<td>$7/2$ [512[]</td>
<td>$5/2$ [510]</td>
<td>$0,38 \pm 0,16$</td>
</tr>
<tr>
<td>$7/2$ [510]</td>
<td>$7/2$ [510]</td>
<td>$\geq 0,4$</td>
</tr>
<tr>
<td>$5/2$ [512[]</td>
<td>$5/2$ [510]</td>
<td>13,0 $\pm 3,3$</td>
</tr>
<tr>
<td>$5/2$ [510]</td>
<td>$7/2$ [512[]</td>
<td>$0,86 \pm 0,22$</td>
</tr>
<tr>
<td>$7/2$ [512[]</td>
<td>$7/2$ [512[]</td>
<td>$7,3 \pm 2,6$</td>
</tr>
<tr>
<td>$7/2$ [512[]</td>
<td>$3/2$ [512[]</td>
<td>$0,70 \pm 0,25$</td>
</tr>
<tr>
<td>$7/2$ [512[]</td>
<td>$5/2$ [510]</td>
<td>$0,27 \pm 0,14$</td>
</tr>
<tr>
<td>$5/2$ [510]</td>
<td>$7/2$ [514[]</td>
<td>$\times 16$</td>
</tr>
<tr>
<td>$5/2$ [510]</td>
<td>$3/2$ [510]</td>
<td>$0,9 \pm 0,4$</td>
</tr>
<tr>
<td>$5/2$ [510]</td>
<td>$1/2$ [510]</td>
<td>$7,2 \pm 1,5$</td>
</tr>
<tr>
<td>$5/2$ [510]</td>
<td>$7/2$ [514[]</td>
<td>$1,9 \pm 0,5$</td>
</tr>
<tr>
<td>$5/2$ [510]</td>
<td>$9/2$ [514[]</td>
<td>$6,3 \pm 1,3$</td>
</tr>
<tr>
<td>$7/2$ [510]</td>
<td>$7/2$ [514[]</td>
<td>$4 \pm 1,7$</td>
</tr>
<tr>
<td>$7/2$ [510]</td>
<td>$9/2$ [514[]</td>
<td>$1,2 \pm 0,6$</td>
</tr>
</tbody>
</table>

7. Erweitertes Niveauschema und Schlußbemerkungen

Die (n,γ)-Messung konnte ein recht vollständiges Bild der tiefliegenden Niveaus in Yb175 vermitteln und schuf gleichzeitig die Grundlage für eine eingehende theoretische Untersuchung, durch welche die starken Einflüsse der Coriolis-Kopplung in diesem Kern nachgewiesen werden konnten. Ohne die Stärke des Nilsson-Modells als Grundlage für diese Berechnungen beibehalten wurde.

Durch den niedrigen Spin des Einfangszustandes in Yb175 ist der Anwendbarkeit der (n,γ)-Messung
DAS KERNNIVEAUSCHEMA VON Yb 175

Abb. 5. Erweitertes Niveauschema. Die in Klammern angegebenen Energiewerte sind an die vorliegende Messung angeschlossen (vgl. 19). Der Fehler dieses Anschlusses kann 4 keV betragen.

Trotz der durch die erwähnten Messungen gegebenen, recht detaillierten Information über Yb175, trugen die \((n,\gamma)\)-Daten mit ihrer hohen Präzision sowohl zu einer wesentlichen Erweiterung als auch zu einem besseren Verständnis des Niveauschemas bei. Besonders am Beispiel der Banden positiver Parität wird deutlich, daß die \(\gamma\)-Übergänge nicht nur Aussagen über Spin und Parität von Niveaus erlauben, sondern auch im Rahmen der RPC-Theorie Aufschlüsse über die Struktur von Zuständen liefern.

Meinem verehrten Lehrer Herrn Prof. Dr. H. MAIER-LEIBNITZ danke ich aufrichtig für die Übertragung und Förderung dieser interessanten Arbeit. Besonders herzlich danke ich Herrn Dr. O. SCHULT für seine Unterstützung und wertvolle Ratschläge, sowie meinen Kollegen Herrn Dr. R. KOCH und Herrn Dr. H. BAADER für gute Zusammenarbeit und hilfreiche Hinweise. Herrn Dr. P. KLEINHEINZ bin ich für wertvolle Diskussionen zu besonderem Dank verpflichtet, wie auch den Herren K. HAGEMANN, Dr. C. GÜNTER und Dr. P. Tjom. Der Leitung und dem Betriebspersonal des DR-3 in Risø danke ich herzlich für die aktive Hilfe bei den experimentellen Vorbereitungen.