Ion-Slip Coefficients for Partially Ionized Argon and Helium

H. S. C. Wang
Bell Aerosystems Company, Buffalo, N. Y.

(Z. Naturforsch. 25 a, 1823—1826 [1970]; received 7 January 1970)

Ion-slip coefficients in Demetriades and Argyropoulos’ generalized Ohm’s law are studied quantitatively in the first approximation for partially ionized Ar and He under various non-isothermal gas conditions. The macroscopic forces due to collisions between electrons, ion, and neutral atoms are accounted by averaging the momentum transfer cross sections over the Maxwellian velocity distributions of the colliding particles. To incorporate the appropriate interpolation and extrapolation techniques in the low energy limit, Frost and Phelps’ cross sections for electron-atom collisions and Dalgarno’s value for ion-atom resonant charge-transfer cross sections were used. The weighted average momentum transfer cross sections thus obtained, which are also important in other diffusion and transport processes, are tabulated at various particle kinetic temperatures for both gases. A family of curves, containing values of ion-slip coefficients calculated from these data is plotted. With the generalized Ohm’s law written in its inverted form, the influence of ion-slip on the “Hall conductivity” in Kruger et al’s formulation is discussed.

1. Introduction

Generalized Ohm’s law provides a fundamental tool for analyzing many problems involving the conduction of current in plasmas on the macroscopic basis. Early work in formulating such a relation between the current density J, electric field E, and magnetic induction B in a partially ionized gas is attributed to Schlüter, Cowling, Finkelburg and Maeccker. Recently Demetriades and Argyropoulos further extended the formulation to multicomponent non-isothermal plasmas with arbitrary degree of ionization. The Ohm’s law is written as

$$E'' = \sigma^{-1} J + \chi J \times B - \psi J \times B \times B. \quad (1.1)$$

Here E'' is the electric field $E + U \times B$ relative to axis moving with the plasma mass velocity U, plus certain terms produced by the finite gradient of electron temperature and partial pressures of plasma components. The scalar conductivity σ depends primarily on the interaction between electrons and heavy particles and has been calculated recently by Schweitzer and Mitchner. Due to the small electron mass, the Hall coefficient χ in the present formulation reduces to the simple expression $(n, e)^{-1}$.

The purpose of this paper is to discuss quantitatively the ion-slip coefficient ψ from fundamental data of atomic processes for argon and helium, which are of special interest in plasma acceleration. Values of ψ for both gases at different degrees of ionization were computed and plotted vs. heavy particle temperatures. For high magnetic field, the influence of ion-slip could out-weight the improvement of accuracy in the calculation of transport coefficients to orders of approximation higher than the first.

2. Ion-Slip Coefficients in Terms of Basic Cross Sections of Atomic Processes

To the first order, the ion-slip coefficient for a three-component (electrons, ions, neutral particles) magneto plasma can be expressed as

$$\psi = (q_3 / q)^2 / (q_{13} + q_{33}), \quad (2.1)$$

Where the subscripts 1, 2, and 3 denote electron, ion, and neutral particle respectively, $q = \sum_{i=1}^{3} q_i$ is

References:

1. A. Schlüter, Z. Naturforsch. 5 a, 72 [1950]; 6 a, 73 [1951].
the total mass density of the plasma, \(q_i = n_i m_i \), \(n_i \) and \(m_i \) are respectively the mass density, the number density, the mass per particle of the \(i \)-th component of the plasma. The positive quantity \(e \) denotes the electronic charge. For Maxwellian distribution of particle velocities of each component, it can be shown * that the coefficient of interaction between \(i \) and \(j \) components is

\[
a_{ij} = a_{ji} = \left(\frac{3}{2} \pi \right)^{-1} n_i n_j \mu_{ij} \frac{5}{2} \int_0^\infty q_m(v) e^{-\gamma_i v^2} v^5 \, dv,
\]

(2.2)

where

\[
\mu_{ij} = m_i m_j / (m_i + m_j),
\]

\[
\gamma_i = \gamma_1 \gamma_j / (\gamma_1 + \gamma_j) ,
\]

\[
\gamma_i = m_i / (2kT_i),
\]

\(k \) is the Boltzmann constant, \(T_i \) the kinetic temperature of the \(i \)-th component, and \(q_m(v) \) denotes the momentum transfer cross section for the \(i-j \) particle collision with a relative velocity \(v \). This formulation, when appropriately interpreted, is equivalent to Cowling's current Eq. (6.22) in his well-known tract.

3. Weighted Average Momentum Transfer Scattering Cross Sections

To calculate \(a_{ij} \) by (2.2), it is convenient to define a weighted average momentum transfer scattering cross section for non-isothermal plasma species \(i \) and \(j \) as

\[
\overline{q_m(v)} = \gamma_{ij} \int_0^\infty q_m(v) e^{-\gamma_i v^2} v^5 \, dv ,
\]

(3.1)

which has the same dimension and units as \(q_m(v) \). According to this definition, \(\overline{q_m(v)} \) is related to the well-known \(\Omega \) integrals of Chapman and Cowling \(^8,9\) as

\[
\overline{q_m(v)} = \left(2 \pi \mu_{ij} / (kT) \right)^{3/2} \Omega_{ij}^{(1)}(1) \]

(3.2)

* This can be done, for example, by following the classical diffusion theory of Langevin (Ann. Chim. Phys. 5, 245 [1905]).

For example, the mutual diffusion coefficient between \(i, j \) species is given in the first order but to a good approximation as

\[
D_{ij} = 3 k T / [16(n_i+n_j) \mu_{ij} \Omega_{ij}^{(1)}(1)] ,
\]

and the mobility of an ion at low field is related to the when \(T_i = T_j = T \) or when one particle species is considered as immobile. The \(\Omega \) integrals are useful quantities and occur quite frequently in the theory of non-uniform gases. To evaluate \(\overline{q_m} \) in the temperature range up to \(2 \times 10^4 \) K we need momentum transfer cross section data from 0 to 30 eV with those at the low energy end weighted most.

For electron-atom collision, \(q_m(v) \) can be calculated by a number of methods, among which Frost and Phelps' results are most suitable for our use. We have computed the average momentum-transfer cross sections \(\overline{q_m} \) of electrons in Ar and He by means of (3.1), using values of \(q_m(v) \) calculated by a five-point Lagrange interpolation formula from the last authors' original tabulation. Due to the smallness of electron mass, \(\gamma_{ij} \) reduces to \(m_i / (2kT_i) \), and \(q_m(1,3) \) is a function of electron temperature \(T_1 \) alone. The results are summarized in Table 1. For electrons in argon, a minimum in \(\overline{q_m} \) exists near \(1500 \) K, reminiscent of the Ramsauer-Townsend effect.

Table 1. \(\overline{q_m(1,3)} \) for electrons in Ar and He.

<table>
<thead>
<tr>
<th>(T_1) in (10^8) K</th>
<th>(\overline{q_m(1,3)}) in Ar in (10^{-16}) cm(^2)</th>
<th>(\overline{q_m(1,3)}) in He in (10^{-16}) cm(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.734</td>
<td>5.884</td>
</tr>
<tr>
<td>1.0</td>
<td>0.328</td>
<td>6.282</td>
</tr>
<tr>
<td>1.5</td>
<td>0.324</td>
<td>6.443</td>
</tr>
<tr>
<td>2.0</td>
<td>0.425</td>
<td>6.509</td>
</tr>
<tr>
<td>3.0</td>
<td>0.736</td>
<td>6.530</td>
</tr>
<tr>
<td>4.0</td>
<td>1.095</td>
<td>6.494</td>
</tr>
<tr>
<td>5.0</td>
<td>1.473</td>
<td>6.434</td>
</tr>
<tr>
<td>6.0</td>
<td>1.860</td>
<td>6.362</td>
</tr>
<tr>
<td>7.0</td>
<td>2.255</td>
<td>6.283</td>
</tr>
<tr>
<td>8.0</td>
<td>2.655</td>
<td>6.201</td>
</tr>
<tr>
<td>9.0</td>
<td>3.050</td>
<td>6.117</td>
</tr>
<tr>
<td>10.0</td>
<td>3.457</td>
<td>6.033</td>
</tr>
<tr>
<td>12.0</td>
<td>4.251</td>
<td>5.868</td>
</tr>
<tr>
<td>14.0</td>
<td>5.025</td>
<td>5.708</td>
</tr>
<tr>
<td>16.0</td>
<td>5.765</td>
<td>5.557</td>
</tr>
<tr>
<td>18.0</td>
<td>6.462</td>
<td>5.415</td>
</tr>
<tr>
<td>20.0</td>
<td>7.109</td>
<td>5.281</td>
</tr>
</tbody>
</table>

\(\overline{q_m} \) above via \(K = e \gamma_{ij} / (kT) \), where \(e_i \) denotes the ionic charge.

\(^{11}\) D. Barriere, Phys. Rev. 84, 653 [1951].

\(^{12}\) T. F. O'Malley, Phys. Rev. 130, 1020 [1963].

\(^{15}\) L. S. Frost and A. V. Phelps, Phys. Rev. 136, 1538 [1964].

\(^{16}\) The author is indebted to Drs. Frost and Phelps for kindly supplying him with a set of tabulated values of \(q_m \) for electrons in Ar and He.

\(^{17}\) C. Ramsauer and R. Kollath, Ann. Physik 12, 529 [1932].
For ion-atom collision, it can be shown from the theory of resonance charge transfer \(^{18-20}\) that

\[
q_m(v) = 2q(v),
\]

(3.3)

where \(q(v)\) is the total charge-exchange scattering cross section. In searching for a representative set of data for \(q(v)\), it is felt that Dalgarno’s values deduced from ion mobilities in their parent gases are appropriate for our purpose \(^{21}\). To interpolate and extrapolate his data, we note from Holstein’s development \(^{18}\) that \(q_m(v)\) and hence \(q(v)\) can be expressed as a quadratic in \(b_c\), the “critical impact parameter” satisfying the relation

\[
[V_1 \frac{e^{-ab_c/\hbar v}}{(2\pi b_c/a)^{1/2}} = \pi/4,
\]

where \(V_1\) and \(a\) are constants in the charge-exchange interaction term assumed. As \(b_c\) is usually large, its dependence on the relative velocity \(v\) is very nearly of the form \([\text{const} - (\ln v)/a]\). We therefore introduce the following empirical representation

\[
q(v) = A(\ln v)^2 + B \ln v + C. \tag{3.4}
\]

(3.4)

With the substitution of (3.3) and (3.4) in (3.1), the integration with respect to \(v\) can be carried out to give

\[
q_m = (A/2)(\ln \gamma_{ij})^2 - \left[\left(\frac{3}{2} - \gamma\right) A + B\right] \ln \gamma_{ij} + \frac{1}{2} (1 - 3\gamma + \varkappa) A + \left(\frac{3}{2} - \gamma\right) B + 2C, \tag{3.5}
\]

(3.5)

where \(\gamma = 0.577215\ldots\) is the Euler’s constant, and

\[
\varkappa = \int_0^\infty (\ln x)^2 e^{-x} \, dx = 1.978112\ldots
\]

The constants \(A, B,\) and \(C\) are determined from (3.4) using DALGARNO’s \(^{19}\) values of \(q(v)\) at 0.1, 10, and 10\(^3\) eV. Assuming equal ion and atomic masses, \(\gamma_{23}\) reduces to \(m_2/(2kT)\), with \(T = T_2 + T_3\). Values of \(q_m(3,2)\) computed for Ar and He are summarized in Table 2.

4. Numerical Computation of Ion-Slip Coefficient \(\psi\)

Utilizing the average momentum transfer cross section \(q_m\) computed in the previous section, the calculation of \(\psi\) from (2.1) and (2.2) is straightforward. A typical family of curves showing the variation of \(\psi\) with \(T\) at \(a_{13} \ll a_{23}\) is displayed in Figure 1.

Table 2. \(q_m(3,2)\) for ions in parent gas.

<table>
<thead>
<tr>
<th>(T = T_2 + T_3)</th>
<th>(\bar{q}_{m(3,2)}) for Ar(^+) in Ar</th>
<th>(\bar{q}_{m(3,2)}) for He(^+) in He</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>153.5</td>
<td>76.6</td>
</tr>
<tr>
<td>1.0</td>
<td>147.3</td>
<td>71.7</td>
</tr>
<tr>
<td>2.0</td>
<td>141.1</td>
<td>67.0</td>
</tr>
<tr>
<td>3.0</td>
<td>137.6</td>
<td>64.4</td>
</tr>
<tr>
<td>4.0</td>
<td>135.1</td>
<td>62.5</td>
</tr>
<tr>
<td>5.0</td>
<td>133.2</td>
<td>61.1</td>
</tr>
<tr>
<td>6.0</td>
<td>131.6</td>
<td>60.0</td>
</tr>
<tr>
<td>7.0</td>
<td>130.3</td>
<td>59.0</td>
</tr>
<tr>
<td>8.0</td>
<td>129.2</td>
<td>58.2</td>
</tr>
<tr>
<td>9.0</td>
<td>128.2</td>
<td>57.5</td>
</tr>
<tr>
<td>10.0</td>
<td>127.3</td>
<td>56.8</td>
</tr>
<tr>
<td>12.0</td>
<td>125.8</td>
<td>55.7</td>
</tr>
<tr>
<td>14.0</td>
<td>124.5</td>
<td>54.8</td>
</tr>
<tr>
<td>16.0</td>
<td>123.4</td>
<td>54.0</td>
</tr>
<tr>
<td>18.0</td>
<td>122.4</td>
<td>53.3</td>
</tr>
<tr>
<td>20.0</td>
<td>121.5</td>
<td>52.7</td>
</tr>
</tbody>
</table>

Fig. 1. Ion-Slip coefficient \(\psi\) for partially ionized Argon.

\(\bar{q}_{m(3,2)}\) is the total charge-exchange scattering cross section, \(\bar{q}_{m(3,2)}\) reduces to \(m_2/(2kT)\), with \(T = T_2 + T_3\). Values of \(\bar{q}_{m(3,2)}\) computed for Ar and He are summarized in Table 2.
Figs. 1 and 2 for Ar and He respectively, where the parameter $\beta = n_2/(n_2 + n_3)$ denotes the degree of ionization, and $\bar{n} = (n_2 + n_3)/n_0$ is the total heavy particle number density expressed as a fraction of the Loschmidt's number $n_0 = 2.687 \times 10^{19} \text{ cm}^{-3}$.

It is interesting to note that (1.1) can be inverted to give J in terms of E'' (1. c. 4):

$$J = \sigma \left[E'' - \frac{\sigma \chi}{(1 + \sigma \psi B^2)^2 + (\sigma \chi B)^2} E' \times B \right. + \frac{\sigma^2 \chi^2 + \sigma \psi (1 + \sigma \psi B^2)}{(1 + \sigma \psi B^2)^2 + (\sigma \chi B)^2} E'' \times B \times B \left. \right] \quad (4.1)$$

If ion-slip is neglected or $\psi = 0$, the coefficient of the $E' \times B$ term reduces to the “Hall Conductivity” $\sigma^{(1)}_H$ of Kruger, Mitchner, and Daybelge, and the coefficient of the $E'' \times B \times B$ term constitutes part of their $\sigma^{(1)}$. When $B \geq [a_{22}/(n_1 e)] (q/Q_s)^2$, say of the order of 1 weber/m2 in the range of parameters displayed in Figs. 1 and 2, the influence of ion-slip on transport properties could become more important than the improvement of accuracy by carrying calculations to second and higher orders of approximation.

Acknowledgment

The author is indebted to C. Weber for programming the numerical computations.