Metastable Dissociation of CH$_5^+$ Ions in the Methane Mass Spectrum

I. MASTAN and V. MERCEA

Atomic Physics Laboratory, Faculty of Physics, Cluj University, Cluj, Rumania

The main dissociation channels of the CH$_5^+$ ion, i. e.

\[\uparrow \text{CH}_4^+ \rightarrow \text{CH}_5^+ + (H) \quad (m_\text{g}^* = 14.90) \]
\[\rightarrow \text{CH}_3 + (2 \text{H}) \quad (m_\text{g}^* = 13.26) \]

have been investigated by a mass spectrometric method. The pressure dependences of the ratios $I_{14,90}/I_{17}$ and $I_{12,36}/I_{17}$, in the range from 4.4×10^{-4} to 1×10^{-4} Torr, were plotted. The two ratios depend linearly on the pressure in the mass spectrometer analyzer. Since the two straight lines do not pass through the origin, the conclusion is drawn that, for both dissociation channels of the CH$_5^+$ ion, besides the collision-induced transitions, spontaneous transitions, i. e. pure metastable transitions, take place.

The spontaneous dissociation constants ($k_a = 7.5 \times 10^6 \text{ sec}^{-1}$, $k_b = 5.2 \times 10^4 \text{ sec}^{-1}$) and collision-induced dissociation cross-sections ($\sigma_1 = 5.25 \times 10^{-11} \text{ cm}^2$, $\sigma_2 = 3.2 \times 10^{-10} \text{ cm}^2$) have been estimated. These results are discussed and compared with those reported by other authors.

The often investigated 1-11 reaction

\[\text{CH}_4^+ + \text{CH}_4 \rightarrow \text{CH}_5^+ + \text{CH}_3 \] (1)

is not the only possible one between the parent CH$_4^+$ ion and the neutral methane molecule, many others, leading to the formation of heavier ions, being known, but it is generally accepted that it has the largest cross-section. Reaction (1) takes place at low energies, especially in the mass spectrometer ion source. At larger energies, corresponding to the whole accelerating voltage of conventional mass spectrometers, dissociation reactions of the parent ion take place 11.

As to the stability of the CH$_5^+$ ion, Field et al. 5 investigated the dissociation channels of the CH$_5^+$ ion in a mass spectrometer at a pressure of 320 mTorr. The relative cross-sections for the different dissociation processes were identified. From their results it follows that the dissociation processes

\[\text{CH}_5^+ \rightarrow \text{CH}_4^+ + (H) \quad (m_\text{g}^* = 14.90) \] (2)
\[\rightarrow \text{CH}_3 + (2 \text{H}) \quad (m_\text{g}^* = 13.26) \] (3)

have by far the largest cross-sections. It is specified by them that for the transition (2) the ratio $I_{14,90}/I_{17}$ increases approximately linearly with the pressure in the mass spectrometer analyzer. The conclusion is drawn that this process is collision-induced. The absolute value of the cross-section of process (2) is $2 \times 10^{-16} \text{ cm}^2$.

The dissociation processes of CD$_5^+$, CH$_5^+$ and CD$_5^+$ were studied by Kuprianov 12 with two mass spectrometers in tandem. Between the two a collision chamber was inserted 13, in which there was a controlled low pressure atmosphere of neon or air. From the obtained results the author drew the conclusion that in all cases the dissociation of these ions takes place as a result of their collisions with the gas molecules. He concluded that the CD$_5^+$, CH$_5^+$ and CD$_5^+$ ions are stable with regard to spontaneous dissociation (i. e. pure metastable transitions), for all the studied reaction channels.

In the present paper the CH$_5^+$ ion transitions (2) and (3) were again studied.

1. Apparatus

A Dempster type mass spectrometer with electrical scanning of the masses was used. The schematic representation of the apparatus is given in Fig. 1.

Fig. 1. Schematic representation of the mass spectrometer.
1—beam of ionizing electrons, 2—deflector, 3—analyzer, 4—collector.

A detailed description of the apparatus is given in\(^1\). Some characteristics which are of interest in the present paper, will be given. The voltages on the slits are: (A)\(\rightarrow\)1-5% of \(V\); (B)\(\rightarrow\)25% of \(V\) and (C, D)\(\rightarrow\)100% of \(V\), \(V\) being the whole accelerating voltage of the ions (from 360 to 3000 volts). On the deflector plates (corresponding to the trajectory CD) a potential \(\sim 80\%\) of \(V\) is applied. Thus, in the deflector the ions will practically keep the energy gained at point C of the trajectory.

The shape of the metastable “peak” depends on the mass spectrometer characteristics. We give some specifications concerning the shape of our metastable “peaks” in\(^1\).

The following metastable transitions are considered:

\[m^+ \rightarrow m_1^+ + Am. \]

The apparent masses \(m^*\) at which the \(m_1^+\) ions will be collected depend on the trajectory points at which the dissociation took place.

If dissociation takes place at A (cf. Fig. 1), then \(m^* = m_1\) and if dissociation takes place at C, then \(m_0^* = m_1^2/m\). The other apparent masses are in between these limiting values.

\(^1\) I. MASTAN and V. MERCEA, to be published.

Since the slits C and D are at the same potential all ions dissociating on the trajectory portion CD will be practically collected at the same apparent mass \(m_0^* = m_1^2/m\). At this apparent mass they will form a metastable peak similar to the normal peaks of the mass spectrum. This apparent mass, \(m_0^* = m_1^2/m\), corresponds to the maximum height of the metastable “peak”.

The ions which are dissociated on the trajectory portion DE will be collected at masses ranging from \(m_0^* = m_1^2/m\) (if dissociation takes place in the neighbourhood of D), to \(m^* = m\) (if dissociation takes place at the collector).

The superposition of the contributions corresponding to the trajectory portions AC, CD and DE will give the shape of the metastable “peak”. Thus, metastable “peaks” in our mass spectrometer are asymmetrical and very diffuse.

The measurements were performed in a range of pressures in the mass spectrometer analyzer from \(4.4 \times 10^{-4}\) to \(1 \times 10^{-4}\) Torr. The mass spectrometer ion source is of the Nier type. The energy of the ionizing electrons is constant and equal to 85 eV.

2. Experimental Data

In a previous paper\(^1\) the methane mass spectrum obtained in our mass spectrometer with a relatively high pressure in the analyzer and the ion source was studied. An approximate estimation of the shapes of the main collision-induced metastable transition “peaks” was given. Using these results we have studied the most important channels of the \(\text{CH}_5^+\) ion dissociation as indicated in (2) and (3). For this purpose we have investigated the pressure dependence of the ratios \(I_{14.98}/I_{17}\) and \(I_{13.26}/I_{17}\). The obtained results are given in Fig. 2.

The two ratios depend linearly on the pressure in the mass spectrometer analyzer. From the fact that the two straight lines do not pass through the origine we conclude that besides the collision-induced transitions, spontaneous transitions, i.e. pure metastable transitions, take place.

It is likely that for the energy of 85 eV of the ionizing electrons the \(\text{CH}_5^+\) ions have a large internal energy. Hence, a part of the \(\text{CH}_5^+\) ions can have sufficiently large internal energies to undergo spontaneous dissociation on their way from the source to the collector. From Fig. 2 it can be seen that in the spontaneous dissociation of the \(\text{CH}_5^+\) ion the forma-
tion of \(\text{CH}_4^+\) is about 10 times more probable than that of \(\text{CH}_3^+\).

With these results the diagram of the main dissociation channels of the \(\text{CH}_5^+\) ion may be written in the form

\[
\text{CH}_5^+ \xrightarrow{\lambda_1} \text{CH}_4^+ + (\text{H}) \\
\text{CH}_5^+ \xrightarrow{\lambda_2} \text{CH}_3^+ + (2\text{H})
\]

Here \(\lambda\) represents the constant of the spontaneous dissociation, while \(\sigma\) corresponds to the collision-induced dissociation and represents the cross-section of the process.

The whole metastable “peak” is formed by superposition of the ionic currents corresponding to the spontaneous and collision-induced metastable transitions. If \(I_{m^*}\) is the height of the metastable “peak”, corresponding to the apparent mass \(m^*\), one can write

\[
I_{m^*} = I_{m^*} + (I_{m^*})_{\text{c.i.}} \cdot (I_{m^*})_{\text{c.i.}}.
\]

Here, \(I^{*}\) represents the contribution of the spontaneous dissociations (pure metastable transitions) and \((I_{m^*})_{\text{c.i.}}\) represents the contribution of the collision-induced dissociations.

3. Estimation of the Parameters \(\sigma_1, \sigma_2, \lambda_1, \lambda_2\) and of \((I_0)_{17}\)

3.1. The system of equations for these quantities

To estimate these quantities we shall follow a way analogous to that presented in the paper\(^\text{14}\). For this, each point of the trajectory (Fig. 1), from the source to the collector, is associated with a coordinate \(x (x_A = 0)\) and a corresponding time \(t (t_A = 0)\).

Knowing the main dissociation channels of the \(\text{CH}_5^+\) ion the following differential equation can be written

\[
dI_{17} = - (\lambda_1 + \lambda_2) I_{17} dt - (\sigma_1 N + \sigma_2 N) I_{17} v dt.
\]

On the trajectory portion AC the ion is accelerated up to the maximum energy. For simplification we will put, for the ion on the trajectory portion AC, an average velocity \(k\). If \(k = \sqrt{2eV/m}\) is the ion velocity at C one can write \(k_a = k/2\). For the trajectory portion CE the ion velocity is constant and equal to \(k\).

Introducing

\[
Q = \exp\{ - [(\sigma_1 N + \sigma_2 N) (k t_E - (k/2) t_c)] \}.
\]

Eq. (5) is integrated to give

\[
I_{17} = I_0 Q \exp\{ - (\lambda_1 + \lambda_2) t_c \}.
\]

Eq. (7) gives the \(\text{CH}_5^+\) ion current intensity at the collector in terms of \((I_0)_{17}\) (for \(x_A = 0\)) and of the dissociation parameters. The \(\text{CH}_5^+\) ions which undergo spontaneous dissociation in the spectrometer deflector (the CD trajectory portion — cf. Fig. 1) will give just the heights of the pure metastable “peaks” corresponding to the apparent masses 14,90 and 13,26. For these heights the notations \(I_{14,90}\) and \(I_{13,26}\) are introduced.

If the \(\text{CH}_5^+\) ions would only dissociate spontaneously then (for the transition \(\text{CH}_5^+ \rightarrow \text{CH}_4^+ + (\text{H})\))

we could write

\[
I'_{14,90} = I_0 \exp\{ - \lambda_1 t_c \} - I_0 \exp\{ - \lambda_1 t_D \}.
\]

But in the ionic beam the spontaneous and the collision-induced metastable transitions take place simultaneously. Thus, a better approximation for \(I'_{14,90}\) can be obtained if in Eq. (8) \(I_0\) values are replaced by average values of the \(\text{CH}_5^+\) ionic currents which remain after collision-induced metastable transitions have taken place on each of the trajectory portions AC and CD. If these average values are denoted by \((I_0)_{\text{AC}}\) and \((I_0)_{\text{CD}}\) Eq. (8) can be written...
in the form

\[I_{14,90} = (I_a)_{AC} \exp\{-\lambda_1 t_c\} - (I_a)_{CD} \exp\{-\lambda_1 t_d\}. \]

(9)

For \((I_a)_{AC}\) and \((I_a)_{CD}\) one can write

\[(I_a)_{AC} = (I_0/2) (1 + \Psi_1), \]

(10)

\[(I_a)_{CD} = (I_0/2) \Psi_1 (1 + \Psi_2). \]

(11)

with

\[\Psi_1 = \exp\{- (\sigma_1 N + \sigma_2 N) (k/2) t_c\}, \]

\[\Psi_2 = \exp\{- (\sigma_1 N + \sigma_2 N) k (t_d - t_c)\}. \]

Using (10) and (11) Eq. (9) can be written in the form

\[I_{14,90} = (I_0/2) [(1 + \Psi_1) \exp\{- \lambda_1 t_c\} - \Psi_1 (1 + \Psi_2) \exp\{- \lambda_1 t_d\}]. \]

(12)

Similarly, for \(I_{13,26}\) one can write

\[I_{13,26} = (I_0/2) [(1 + \Psi_1) \exp\{- \lambda_2 t_c\} - \Psi_1 (1 + \Psi_2) \exp\{- \lambda_2 t_d\}] = P. \]

(13)

The following notations will be introduced

\[(I_{14,90}/I_{17}) = A_1, \quad (I_{13,26}/I_{17}) = A_2, \]

\[A_1 Q \exp\{- \lambda_1 t_c\} = R, \quad A_1 (1 + \Psi_1) \exp\{- \lambda_1 t_c\} - \Psi_1 (1 + \Psi_2) \exp\{- \lambda_1 t_d\} = P. \]

(14)

With these notations the exponential Eqs (7), (12), (13), and (14) lead to the transcendental Equation

\[A_2 Q \exp\{- \lambda_1 t_c\} = \frac{1}{2} [(1 + \Psi_1) \exp\{- \lambda_2 t_c\} - \Psi_1 (1 + \Psi_2) \exp\{- \lambda_2 t_d\}] \exp\{- \lambda_2 t_E\}. \]

(15)

If \(Q\) is known (it implies the knowledge of the values \(\sigma_1\) and \(\sigma_2\)), \(\lambda_1\) and \(\lambda_2\) can be computed with the help of Eqs (15) and (14).

3.2. Estimation of the cross-sections \(\sigma_1\) and \(\sigma_2\)

For that pressure range in which the ratios \(I_{14,90}/I_{17}\) and \(I_{13,26}/I_{17}\) depend linearly on the pressure (cf. Fig. 2), one can write

\[(I_{14,90}/I_{17}) = \sigma_1 p DX + K_1, \]

\[(I_{13,26}/I_{17}) = \sigma_2 p DX + K_2 \]

(16)

We specify that by \(I_{17}, I_{14,90}\) and \(I_{13,26}\) the whole heights of the peaks are denoted. On the basis of the

\[^{15}\text{In order to avoid any confusions we specify that } N \text{ is the concentration expressed in molecules/cm}^3, \text{while } p \text{ is the pressure expressed in Torr.}\]
With the help of \(\lambda_1 \) and \(\lambda_2 \) the lifetimes and half-lives for both spontaneous dissociations may be computed

\[
\tau_1 = (1/\lambda_1) = 1.33 \cdot 10^{-6} \text{ sec},
\]
\[
\tau_2 = (1/\lambda_2) = 1.93 \cdot 10^{-5} \text{ sec},
\]
\[
(T_{\nu_1})_1 = (\ln 2/\lambda_1) = 0.93 \cdot 10^{-6} \text{ sec},
\]
\[
(T_{\nu_2})_2 = (\ln 2/\lambda_2) = 1.33 \cdot 10^{-5} \text{ sec}.
\]

From Eq. (7), using the values obtained here, \((I_0)_{17}\) can be computed. For \(p = 4.4 \cdot 10^{-4} \) Torr, knowing that \((I_{17})_E = 32\), one obtains \((I_0)_{17} = 142\) (in arbitrary units).

4. Discussion of the Results

A value of \(\sigma_1 = 5.25 \cdot 10^{-16} \text{ cm}^2 \) was estimated by us for the cross-section of the collision-induced dissociation corresponding to the reaction

\[
\text{CH}_5^+ \rightarrow \text{CH}_4^+ + (\text{H}).
\]

Field et al.\(^5\) reported, for the same dissociation process, a cross-section of \(2 \cdot 10^{-16} \text{ cm}^2 \). The agreement between the two values is acceptable if it is taken into account that our determination is only approximative.

In his paper Kuprianov\(^12\) specifies that the time necessary for the ions to cross the first mass spectrometer analyzer is of the order of \(6 \cdot 10^{-6} \) sec. Under these conditions the fact that one does not observe spontaneous dissociation of the CH\(_5^+\) ions in the tandem collision chamber\(^13\), becomes explicable.

For the spontaneous dissociation

\[
\text{CH}_5^+ \rightarrow \text{CH}_4^+ + (\text{H}),
\]

which is much more probable than that into CH\(_3^+\), we have obtained \((T_{\nu_1})_1 = 0.93 \cdot 10^{-6} \) sec. If one compares this value with the time of \(6 \cdot 10^{-6} \) sec necessary for the ions to reach the collision chamber, it becomes clear that the spontaneous dissociations which occur in the chamber, will be masked by the collision-induced ones.

For the spontaneous dissociation

\[
\text{CH}_5^+ \rightarrow \text{CH}_3^+ + (2 \text{ H}),
\]

which is more than 10 times less probable than the first one, we have obtained \((T_{\nu_2})_2 = 1.33 \cdot 10^{-5} \) sec. Having in view the smallness of this transition probability and the fact that \((T_{\nu_2})_2\) is comparable with \(6 \cdot 10^{-6} \) sec, it will be difficult to observe it in the collision chamber.