The Variational Solution of the Schrödinger Equation of Finite Fermion Systems

I. Hartree-Fock Approximation and Independent Pair Model

LEVENTE SZASZ and JOHN SCHROEDER

Department of Physics, Fordham University, New York, U.S.A.
(Z. Naturforsch. 21 a, 1855—1856 [1966]; received 14 September 1969)

In this and the succeeding communication we outline a method for obtaining the variational solution of the Schrödinger equation for finite Fermion systems. We consider the Schrödinger equation

$$\psi = E \psi \tag{1}$$

where ψ is in general a non-local, translation invariant, symmetric potential without hard core. This includes the Tabakin-potential 1 for nucleons or the Coulomb potential for electrons in an atom; the system under study may be a finite nucleus or the electrons of an atom. The new method is based on a trial function (called correlated wave function) of the form 2

$$\psi = \psi_V + \psi_C \tag{2}$$

where ψ_V is the Hartree-Fock (HF) wave function built from the orbitals Φ_1, \ldots, Φ_n and

$$\psi_C = \sum_{i<j}^{n} f_{ij}^2 (ij) + \sum_{i<j}^{n} f_{ij}^3 (ij) + \ldots \tag{3}$$

In this finite sum the successive terms represent two-, three-, \ldots-particle correlations where e. g.

$$f_{ij}^3 (ij) = A (\Phi_i (1) 2 D_1^3 (i j) 1 2) \tag{4}$$

and Φ_i, Φ_j, \ldots are arbitrary, antisymmetric correlation functions, $D_1^3 (i j)$ is the $(A - 2)$ determinant obtained from ψ_V by striking out the rows containing Φ_i and Φ_j and the coordinates 1 and 2; A is an antisymmetrizer. All properties of (3) along with the matrix components of the Hamiltonian in (1) can be obtained as straightforward generalizations of the Coulomb case developed earlier by one of us. 3

We define the HF energy as $E_F = \langle \psi_V | H | \psi_V \rangle$ and the energy of the n-particle approximation $E^{(n)} (2 \leq n \leq A)$ as

$$E^{(n)} = \text{Min.} \{ \langle \psi_V | H | \psi_V \rangle / \langle \psi_V | \psi_V \rangle \} \tag{5}$$

where ψ_V contains all terms in (3) up to and including the n-particle correlated functions f_{ij}. The method consists of computing successively E_F, $E^{(2)}, E^{(3)}, \ldots, E^{(A)}$ where the energy at each step, is an upper limit to the true eigenvalue of (1), i.e.

$$E_F > E^{(2)} > E^{(3)} \ldots \ldots > E^{(A)} \geq E \tag{6}$$

Defining the correlation energy of the n-particle approximation by $E^{(n)} = E^{(n)} - E^{(n-1)}$ where $2 \leq n \leq A$ and $E^{(1)} = E_F$ we get the variational solution as

$$E_V = E_F + \sum_{n=2}^{A} E^{(n)} \tag{7}$$

In the present note we outline the calculation of E_F and $E^{(2)}$. For E_F the energy minimum principle leads to the HF equations $H \Phi_i = \varepsilon_i \Phi_i$ where $H = H_0 + \sum U_i$ and U_i is the (non-local) HF potential related to Φ_i; the HF energy is given as $E_F = \sum \varepsilon_i - \sum \varepsilon_i j$ where

$$\varepsilon_i j = \langle \Phi_i | U | \Phi_j \rangle \tag{8}$$

The calculation of $E^{(2)}$ is done by using the idea of the independent-pair model 4 which was first suggested by Brueckner 3, extended and refined by Bethe 3, and clearly by Gomes, Walecka and Weisskopf 3. We assume that each $\Phi_i j$ can be computed independently, one at a time; in the formula for $E^{(2)}$ however, we do not make any approximations. Let $\varepsilon_i j$ be the correlation energy of one pair. We get the equation for $\Phi_i j$ by varying $\varepsilon_i j$; the results will depend on the subsidiary conditions. It can be shown that the “strong” orthogonality condition $\int \Phi_i^* (1) \Phi_j (2) \mathrm{d}^3 r = 0$ (for $s = 1, 2, \ldots, A; s \neq i, j$) which is called the partial-orthogonality is non-restrictive 5. With this condition we get

$$(H_i j + P_{12} O_{12}) \Phi_j = \varepsilon_i j \Phi_i j + (\varepsilon_i j - P_{12} O_{12}) \mu_{ij} \tag{9}$$

where $H_i j \equiv H (1) + H (2) - \varepsilon_i - \varepsilon_j$

and

$$O_{12} \equiv v_{12} - U_1 (1) - U_2 (2) - U_1 (1) + U_2 (2) + \varepsilon_i j \tag{10}$$

For P_{12} we have $P_{12} = P_1 P_2$ where P_1 is a projection operator removing the HF orbitals except Φ_i and Φ_j and $\mu_{ij} \equiv \text{det} [\Phi_i \Phi_j]$. Using (5) we get for the correlation energy

$$E^{(2)} = \sum_{i<j} (\varepsilon_i j N_{ij} + X_{ij}) / N_{ij}^2 \tag{11}$$

where N_{ij} is the normalization constant if only the pair $(i j)$ is correlated, N_{ij} is the full normalization constant and X_{ij} contains the off-diagonal matrix components of the Hamiltonian with respect to $\Phi_i j$ with different orbital indices. 6

A different equation is obtained for $\Phi_i j$ if the slightly restrictive so-called total orthogonality condition

$$\Phi_i (1) | \Phi_j (2) = 0 \tag{12}$$

Reprint requests to Dr. L. Szasz, Department of Physics, Fordham University, New York, N.Y. 10458, U.S.A.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Kleine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition ‘no derivative works’). This is to allow reuse in the area of future scientific usage.
The Variational Solution of the Schrödinger Equation of Finite Fermion Systems

II. Three-Particle Correlations and Higher Order Effects

LEVENTE SZASZ and JOHN SCHROEDER
Department of Physics, Fordham University, New York, USA

In the preceding note \(^1\) we outlined a method for obtaining the variational solution of the Schrödinger equation of finite Fermion systems \(^2\). The energy of the system was written in the form \(E_V = E_F + \sum_{n=2} A \tilde{E}^{(n)} \) where \(E_F \) is the Hartree-Fock energy and \(\tilde{E}^{(n)} \) is the correlation energy of the \(n \)-particle approximation (\(2 \leq n \leq A \)). In the preceding note \(^1\) (referred to as I) we outlined the calculation of \(E_F \) and \(\tilde{E}^{(2)} \). In order to get the 3-rd order correlation energy we minimize the energy of the system using the trial function

\[
\psi = \psi_F + \sum_{i<j<k} f^{(3)}(i j k)
\]

where the notation is the same as in I. This method may be called the method of "independent triplets" \(^3\); the results again depend on the subsidiary conditions. If the 3-particle functions \(\Phi_{ijk} \) satisfy the non-restrictive partial orthogonality condition \(^4\) (strong-orthogonal to all HF orbitals except \(\Phi_i, \Phi_j, \Phi_k \)) we get the equation

\[
[H_{ijk} + P_{123} O_{ijk}] \Phi_{ijk} = \tilde{\epsilon}_{ijk} \Phi_{ijk} + [\tilde{\epsilon}_{ijk} - P_{123} O_{ijk}] \mu_{ijk}
\]

where \(\tilde{\epsilon}_{ijk} \) is the correlation energy of one triplet (relative to \(E_F \)) and the symbols are the logical generalizations of the symbols used in Eq. (5) of I. Using the \(\Phi_{ijk} \)'s computed from (2), one at a time, one gets

\[
\tilde{E}^{(3)} = \sum_{i<j<k} \tilde{\epsilon}_{ijk} N_{ijk} + \chi_3 - \tilde{E}^{(2)} (N_3 - N_2)
\]

where \(N_{ijk} \) is the normalization constant if only the triplet \((ijk) \) is correlated, \(N_2 \) and \(N_3 \) are the full normalization constants in the two- and three-particle approximations; \(\chi_3 \) contains the off-diagonal matrix components of the Hamiltonian between 2- and 3-particle functions.

Reprint requests to Dr. L. SZASZ, Department of Physics, Fordham University, New York, N.Y. 10458, U.S.A.

\(^3\) Generalization of the "independent pair" model. See Ref. \(^3\) in I.

If \(\Phi_{ijk} \) in (1) is subjected to the slightly restrictive total orthogonality (strong orthogonal to all HF orbitals) then we obtain an equation similar to (2) but a closer investigation shows that it has only the trivial solutions \(\tilde{\epsilon}_{ijk} = 0 \). Therefore, in the case of total orthogonality the energy has to be minimized with respect to the trial function

\[
\psi = \psi_F + \sum_{i<j} f^{(3)}(ij) + f^{(3)}(ijk)
\]

and we get, assuming that \(\psi_F \) and the \(f^{(3)} \)'s are known from the preceding step the equation for \(\Phi_{ijk} \):

\[
[H_{ijk} + P_{123} O_{ijk}] \Phi_{ijk} = (\tilde{\epsilon}_{ijk} + \tilde{E}^{(2)}) \Phi_{ijk} - P_{123} L_{ijk},
\]

where the symbols are the same as in (2) except the projection operators now remove all HF orbitals; the function \(L_{ijk} \) contains the \(\Phi_{ijk} \)'s which are present in the equation because of (4). Using the \(\Phi_{ijk} \)'s, computed from (5), one at a time, we get

\[
\tilde{E}^{(3)} = \sum_{i<j<k} \tilde{\epsilon}_{ijk} N_{ijk} + \chi_3 - \tilde{E}^{(2)} (N_3 - N_2)
\]

where \(N_{ijk} \) is the normalization constant of (4), \(N_3 \) is the full normalization constant in the three-particle approximation and \(\chi_3 \) contains the off-diagonal matrix components of the Hamiltonian with respect to \(\Phi_{ijk} \)'s with different orbital indices.

Beginning with the 4-particle approximation the correlation function has to be written as the sum of real \(n \)-particle collisions ("linked clusters") plus simultaneous 2-, 3-, etc. particle collisions ("unlinked clusters"). We put \(\Phi_{ijkl} = \Phi_{ijkl}^U + \Phi_{ijkl}^L \) where the first is the "real" 4-particle collision, the second is the product of simultaneous two-particle collisions. By putting \(\Phi^U = 0 \) first, one gets \(\Phi^L \) in the same way as in the 3-particle case; then adding \(\Phi^U \) one gets the complete \(\tilde{E}^{(4)} \). (One can assume that \(\Phi^U \) is built from 2-particle \(\Phi_{ij} \)'s). Using total orthogonality we get

\[
\tilde{E}^{(4)} = \sum_{i<j<k<l} \tilde{\epsilon}_{ijkl} N_{ijkl} + \sum_{i<j<k,l} A_{ijkl}^U + A_{ijkl}^L
\]

\[
+ \chi_4 - \tilde{E}^{(2)} (N_4 - N_3)
\]

where \(\tilde{\epsilon}_{ijkl} \), \(N_{ijkl} \), \(N_4 \) and \(\chi_4 \) are similar to the corresponding symbols in (6); \(A_{ijkl}^U \) and \(X_4 \) are the diagonal elements of the matrix functions.