Energies of Excited States of Doubly Ionized Molecules by Means of Auger Electron Spectroscopy

Part I. Electronic States of \(\text{N}_2^{2+} \)

D. STALHERM, B. CLEFF, H. HILLIG, AND W. MEHLHORN

Institute of Nuclear Physics, University of Münster, Germany

(Z. Naturforsch. 24 a, 1728—1733 [1969]; received 29 August 1969)

A new method, Auger electron spectroscopy, is applied to the study of excited states of doubly ionized molecules. The energies of Auger electrons determine directly the vertical energies of doubly ionized states, because the single Auger process leaves the molecule in a state of double ionization. We have investigated the states of \(\text{N}_2^{2+} \) via the K Auger spectrum of \(\text{N}_2 \). The ionization in the K shell was caused by electron impact. The K Auger electrons, analyzed by means of an electrostatic cylindrical mirror analyzer, gave direct evidence for the following states: \(\Sigma^+_g \), \(\Delta^+_g \), \(\Sigma^+_u \), \(\Delta^+_u \), \(\Sigma^+_u \), and \(\Sigma^+_u \). Their energies have been measured and are listed below. Also the energy required to ionize \(\text{N}_2 \) twofold in the \((\sigma_g 2s) \) orbital has been determined to be \((96.5 \pm 1.0) \) eV. Due to the instrumental half width of about \(0.6 \) eV no vibrational structure could be detected.

There exists only little experimental information on electronic and vibrational states of doubly ionized molecules. This is due to the fact that one encounters greater difficulties when the experimental methods used so far to determine these data for neutral and singly ionized molecules are applied in the study of doubly ionized molecules. These methods are absorption and emission spectroscopy, electron impact spectroscopy, photoionization, and photoelectron spectroscopy. In the case of \(\text{N}_2 \) only the appearance potential of the ground state of \(\text{N}_2^{2+} \) and the energy of the excited state \(\Sigma^+_g \) are known. The former has been measured by DORMAN and MORRISON by electron impact spectroscopy and the latter by CARROLL by uv emission spectroscopy.

In this paper it will be shown that Auger electron spectroscopy is particularly well suited to determine the states of doubly ionized molecules. A molecule which has undergone a single Auger process will be left normally in a state of double ionization. In the following section the method will be discussed with \(\text{N}_2 \) as an example. After a short description of the apparatus used in this experiment, the K Auger spectrum is critically analyzed. The various lines of the Auger spectrum are assigned to definite states of \(\text{N}_2^{2+} \) by comparison with the potential energy curves of the \(\text{N}_2^{2+} \) molecular ion which have been calculated by the method of HURLEY and MASLEN and HURLEY.

I. Method

The electron configuration of the ground state of the \(\text{N}_2 \) molecule is given by

\[
\text{KK} (\sigma_g 2s)^2 (\sigma_u 2s)^2 (\pi_u 2p)^4 (\sigma_g 2p)^2, \Sigma^+_g.\]

(1)

After the \(\text{N}_2 \) molecule has been singly ionized in the K shell of one of its atoms (this will be written as \(\text{N}_2^{2+} \)) an Auger process will follow with dominating...
EXCITED STATES OF DOUBLY IONIZED MOLECULES. I. 1729

probability 10. One electron of the configuration \((\sigma_{g} 2s)^{2} (\pi_{u} 2p)^{4} (\sigma_{g} 2p)^{2}\) fills the K vacancy with simultaneous emission of a second electron (Auger electron) of the same configuration. Because the \(\text{N}_2\) molecule has only closed orbitals in the ground state (1), the states of the \(\text{N}_2^{2+}\) molecular ion are given by the states of the following 2-hole configurations:

\[
\begin{align*}
(\sigma_{g} 2p)^{-2}; & 1\Sigma^{+}, \\
(\pi_{u} 2p)^{-1} (\sigma_{g} 2p)^{-1}; & 1\Pi_{u}, \ 3\Pi_{g}, \\
(\sigma_{u} 2s)^{-1} (\sigma_{g} 2p)^{-1}; & 1\Sigma^{+}, \ 3\Sigma^{+}, \ 1\Lambda^{+}, \\
(\sigma_{g} 2s)^{-1} (\sigma_{g} 2p)^{-1}; & 1\Sigma^{+}, \ 3\Sigma^{+}, \ 3\Sigma^{+}, \ 1\Lambda^{+}, \\
(\sigma_{g} 2s)^{-1} (\pi_{u} 2p)^{-1}; & 1\Pi_{g}, \ 3\Pi_{g}, \\
(\sigma_{u} 2s)^{-2}; & 1\Sigma^{+}. \\
(\sigma_{g} 2s)^{-1}; & 1\Sigma^{+}, \ 3\Sigma^{+}, \\
(\sigma_{g} 2s)^{-1} (\pi_{u} 2p)^{-1}; & 1\Pi_{u}, \ 3\Pi_{u}, \\
(\sigma_{g} 2s)^{-1} (\sigma_{u} 2p)^{-1}; & 1\Sigma^{+}, \ 3\Sigma^{+}, \\
(\sigma_{g} 2s)^{-2}; & 1\Sigma^{+}.
\end{align*}
\]

The energy of K Auger electrons of transition \(k\) is given by

\[E_{k}^{\text{(Auger)}} = E(K) - E_{k}(\text{N}_2^{2+}).\] (3)

If the binding energy \(E(K)\) is known (see Table 1), then the energies \(E_{k}^{\text{(Auger)}}\) of the K Auger lines determine directly the unknown energies \(E_{k}(\text{N}_2^{2+})\).

The scale factor \(\beta\) is given by

\[\beta = (2 \pi^{2} \mu c/D_{e} h)^{1/2} \omega_{e}.\] (6)

The values of the constants \(D_{e}\), \(\omega_{e}\) and \(R_{e}\) of the different states of \(C_{g}\) have been taken from BALLIK and RAMSEY 12 and their dissociation limits from READ and VANDERSLICE 13 and FOUGERE and

Table 1. Binding energy, \(E(K)\), of K electron in \(\text{N}_2\) (eV),

<table>
<thead>
<tr>
<th>(E(K)) (eV)</th>
<th>(E_{k}(\text{N}_2^{2+})) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>412 ± 1</td>
<td>409 ± 0.4</td>
</tr>
<tr>
<td>409.5 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

References:

In the scheme of potential curves an ionization in the K shell is given by a vertical transition within the Franck-Condon region from the level $v'' = 0$ of the ground state of N_2 to one of the vibrational levels v' of the $(a_{g} 1s^3)^{-1}, 2\Sigma^+_u$ or $(a_{g} 1s)^{-1}, 2\Sigma^+_u$ state. The potential energy curves of those states are not known. With Nakamura et al. 15 it seems reasonable to assume the state of the N_2 molecular ion to be similar to the ground state $X^1\Sigma^+_g$ of NO$^+$. Therefore we have used the relation $R_e(N_2^{K^+}) = R_e(NO^+, X^1\Sigma^+_g) = 1.062 \text{Å}$ for the potential curve of $N_2^{K^+}$ (dashed curve in Fig. 1). This value of R_e is close to $R_e(N_2, X^1\Sigma^+_g) = 1.097 \text{Å}$. From this one expects a strong $0-0$ transition and a decreasing probability for $v'' = 0 \rightarrow v' > 0$ transitions.

The excited state $N_2^{K^+}$ decays with a mean life time of several 10^{-14}sec via a vertical transition to one of the N_2^{2+} states. These states are either bound and have discrete vibrational structure or are repulsive and have a continuous energy spectrum. Because the $N_2^{K^+}$ state is mostly populated in the level $v' = 0$ and $R_e(N_2^{K^+})$ does not differ strongly from $R_e(N_2, X^1\Sigma^+_g)$, the Franck-Condon region for Auger transitions was assumed to be identical with that of the $v'' = 0$ level of $N_2, X^1\Sigma^+_g$ (dashed vertical lines in Fig. 1).

Due to the short life time of the $N_2^{K^+}$ state of several 10^{-14}sec the level widths are of the order of $0.10-0.15 \text{eV}$. From this one would expect vibrational structure of Auger lines in the following cases: a) The $N_2^{K^+}$ state is populated practically only in one level v'. Then the spacing of final levels v'' of the N_2^{2+} states must be $\geq 0.10-0.15 \text{eV}$. b) The $N_2^{K^+}$ state is populated in more than one level. Then the spacing of $v' \rightarrow v''$ levels should be $\geq 0.10-0.15 \text{eV}$ and approximately equal. No vibrational structure will be observed in cases where the final state dissociates.

One additional interesting feature of Auger electron spectroscopy of molecules should be mentioned. Heteronuclear molecules, e.g. CO, can be investigated via the K Auger spectrum of C or the K Auger spectrum of O. In both cases the final states of CO$^+$ are identical, but the initial states CKO and CO$^{K^+}$ may differ in their potential energy

curves thus giving different Auger spectra. We have indeed found quite different Auger spectra in the case of CO. The results of that investigation will be given in a further publication.

II. Apparatus

The apparatus used in this investigation has been described earlier. Therefore only some details which are characteristic for this investigation will be given here.

The ionization in the K shell of N\(_2\) was caused by electron impact, the beam current and energy of primary electrons were 300 \(\mu\)A and 6000 eV respectively. The pressure of the gaseous target N\(_2\) was about 5\(\times\)10\(^{-3}\) Torr. The Auger electrons were analyzed by means of an electrostatic cylindrical mirror analyzer with an energy resolution of 0.16%. Sixty five K Auger spectra were recorded and added automatically with a 1024 channel multiscaler by applying a dc biased sawtooth voltage, with a repetition rate of one cycle per 16 min, to the spectrometer and storing the counts in the memory of the multiscaler synchronized with the sawtooth.

The K Auger lines of N\(_2\) were calibrated on an absolute scale with the known energies of the KLL transitions of neon and L\(_2,3\)MM transitions of argon. For this calibration gas mixtures of N\(_2\)-neon and N\(_2\)-argon were used.

III. Results and Discussion

Figure 3 shows the K Auger spectrum of N\(_2\). No correction for the dispersion of the spectrometer and the scattering losses of Auger electrons along the path from the target to the detector were applied to the spectrum because we were only interested in the energies of Auger electrons.

The maximum energy of the K Auger transitions of N\(_2\) can be calculated by Eq. (3) to be (366.3 \(\pm\) 0.5) eV. Here we have used \(E(K) = (409.8 \pm 0.4)\) eV of Table 1 and the minimum appearance potential of N\(_2^{2+}\) of (43.5 \(\pm\) 0.3)eV. We prefer this value of \(E(K)\), because the photoelectron method measures the binding energy more directly than the method used by NAKAMURA et al. (analysis of fine structure near the absorption edge). We determined the energy of maximum \(a\) in Fig. 3 to be (366.5 \(\pm\) 0.5) eV, thus the maximum \(a\) is due to Auger transitions with the ground state of N\(_2^{2+}\) as the final state.

The spectrum of Fig. 3 decomposes clearly into three groups which are marked by the hatched regions A and B and the maximum C. These three groups correspond to the final states given in (2 a), (2 b) and (2 c). From the potential energy curves of Fig. 1 it was possible to assign definite final states of the N\(_2^{2+}\) molecular ion to those Auger transitions of group A which appear as distinct maxima.

In Fig. 4 the Auger group A is shown on an enlarged scale. The hatched regions above the energy axis correspond to the energy regions of the potential curves of Fig. 1 within the Franck-Condon region. There is indeed good agreement between these predicted energy regions and the various Auger maxima. As a consequence of this we were able to assign definite states of N\(_2^{2+}\) to the maxima \(a, \beta, \gamma, \delta, \epsilon,\) and \(\varphi\) of Fig. 4 (see Table 2). The experimental energies, given in Table 2, correspond to the maxima of the Auger lines and are relative to the maximum \(a\). In Table 2 theoretical relative vertical ionization energies are also listed. The first

set has been deduced from Fig. 1 and the second has been taken from Hurley. In both cases they correspond to ionizing transitions at $R_e(N_2, X{^1}Σ_g^+)$ = 1.097 Å. Although Hurley calculated the potential energy curves by an equation which was slightly different from Eq. (5), both sets of theoretical values agree very well.

$$\text{State}^a \quad \text{Experiment} \quad \text{Auger spectroscopy} \quad \text{This work} \quad \text{UV spectroscopy} \quad \text{This work} \quad \text{Theory} \quad \text{HURLEY}^b$$

<table>
<thead>
<tr>
<th>State</th>
<th>Experiment</th>
<th>UV</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1\Sigma_g^+$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$2\Pi_a$</td>
<td>2.9 ± 0.4 (α)</td>
<td>2.5 ± 0.4</td>
<td>3.41</td>
</tr>
<tr>
<td>$3\Pi_a$</td>
<td>6.4 ± 0.3 (β)</td>
<td>5.9 ± 0.3</td>
<td>5.91</td>
</tr>
<tr>
<td>$3\Sigma_g^+$</td>
<td>7.9 ± 0.25 (γ)</td>
<td>7.9 ± 0.25</td>
<td>7.99</td>
</tr>
<tr>
<td>$1\Pi_u$</td>
<td>9.5 ± 0.25 (δ)</td>
<td>9.8 ± 0.25</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2. Relative vertical energies of the N_2^{2+} molecular ion in eV. The letters in parenthesis refer to the Auger maxima of Fig. 3 and 4. — a The notation of the states is exactly analogous to that used for the isoelectronic molecule C_2 by Fougeré and Nesbitt; b The errors correspond to the Franck-Condon region (dashed lines) of Fig. 1.

We believe that the maximum α corresponds mainly to $1\Sigma_g^+$ rather than $X^3\Pi_a$ because the small experimental width of the line α agrees with the predicted line width by the Franck-Condon region (see hatched region 1 in Fig. 4). From the broader energy region of Auger transitions to $X^3\Pi_a$ (hatched region 2 in Fig. 4) we expect a broad maximum which is masked by the maxima α, β and γ. For the same reason the maximum ε is believed to correspond to $d^1\Sigma_u^+$ rather than $B^3\Pi_u$. Also the transitions to the states $A^2\Sigma_g^-$ and $b^1\Pi_u$ are expected to give rather broad Auger lines. This and the possibility to have small relative intensity may have prevented their observation as distinct maxima.

The agreement between the relative energies of maximum ε and the $d^1\Sigma_u^+$ state, found by Carroll, is excellent. The energy required to ionize the N_2 molecule twofold in the $(\sigma_g 2s)$ orbital has been determined via the Auger line C to be $(96.5 ± 1.0)$ eV.

The Auger line D at $(383.7 ± 0.0)$ eV in Fig. 3 is most probably due to the following autoionizing transitions leading to N_2^{2+}:

$$\begin{align*}
(\sigma_g 1s)^{-1} (\pi_g 2p)^{1} \quad 1\Pi_u \rightarrow \quad (\pi_g 2p)^{1} \quad 2^2\Pi_u \\
(\sigma_g 1s)^{-1} (\pi_g 2p)^{1} \quad 1\Pi_g \rightarrow \quad + \text{Auger electron.}
\end{align*}$$

Nakamura et al., using synchrotron radiation, have measured the autoionizing state $(\sigma_g 1s)^{-1} (\pi_g 2p)^{1}, 1\Pi_u,$ of the N_2 molecule as a strong and broad band in the absorption spectrum. Earlier measurements of the fine structure near the K absorption edge of gaseous N_2 by Prins and Magnusson have also shown this strong resonance absorption but with less instrumental resolution. The energy of the level $\nu = 0$ of this autoionizing state is given by Nakamura et al. as $(400.24 ± 0.1)$ eV. The energy of the level $\nu' = 0$ of N_2^+, $2^2\Pi_u$, is 16.74 eV. Therefore the energy of the $0-0$ Auger transition of (7) is $(383.5 ± 0.1)$ eV. From the broad absorption band, measured by Nakamura et al., it follows that higher vibrational levels (up to $\nu' = 4$ or 5) of the autoionizing state are excited with almost equal probability. On the other hand the half width of the Auger line D is about 0.75 eV, where about 0.6 eV is due to the instrumental width. So the natural width of the line D is quite small, being about $0.4–0.5$ eV. This would demand that only transitions with $\Delta \nu = 0$ and ± 1 will occur with considerable intensity.

The small maximum E in Fig. 3 is probably due to the autoionizing transitions

$$\begin{align*}
(\sigma_g 1s)^{-1} (\pi_g 2p)^{1} \quad 1\Pi_u \rightarrow \quad (\pi_g 2p)^{1} \quad X^2\Sigma_g^+ \\
(\sigma_g 1s)^{-1} (\pi_g 2p)^{1} \quad 1\Pi_g \rightarrow \quad + \text{Auger electron.}
\end{align*}$$

The structure of the Auger spectrum around 376 eV is supposed to result from autoionizing transitions leading to highly excited electronic states of N_2^{2+}. The broad maximum at about 352 eV in Fig. 3 has not yet been identified. One possible explanation is that this maximum is due to Auger satellite transitions following the simultaneous ionization of the N_2 molecule in the K shell and the outer shell by electron impact. This would be exactly analogous to the Auger satellite lines found recently in neon and argon.

In this investigation no fine structure of the Auger lines due to vibrational levels of N_2^+ and N_2^{2+} has been found. The main reason for this is the instrumental width of about 0.6 eV at energies of the Auger group A. In order to detect any vibrational structure the resolution of the spectrometer should be increased at least by a factor of two.

The authors are indebted to Prof. Dr. E. HUSTER for his continuing interest in this investigation, to Prof. Dr. O. OSBERGHAUS, and Dr. BREHM for discussions at an earlier stage of this work and to the Deutsche Forschungsgemeinschaft for financial support.

On the Phonon and Polariton Spectrum of LiJO$_3$*

R. CLAUS, H. W. SCHRÖTTER, and H. H. HACKER

Sektion Physik der Universität München, Lehrstuhl Prof. BRANDMÜLLER

and S. HAUSSÜHL

Institut für Kristallographie der Universität Köln

Raman spectra of the polar A, E_x and the non polar E_2 species of LiJO$_3$ are presented. The number of phonons expected by group theory has been calculated. LO-TO splitting of two E_2 phonons could be observed and the polariton associated with the $A(z)$ phonon at 795 cm$^{-1}$ has been recorded.

Since NATH and HAUSSÜHL detected the strong second harmonic generation of a ruby laser in Lithium Iodate and an extremely great piezoelectric longitudinal effect parallel to [001] was detected, the LiJO$_3$ crystal has become of great common interest. The present paper will deal with the vibrational species of the optical phonons observed by Raman scattering experiments.

Theory

LiJO$_3$, which belongs to the crystal symmetry class C_n, as could be shown three years ago, has the Raman scattering tensors,

$$A(z) = \begin{pmatrix}
 a & 0 & 0 \\
 0 & a & 0 \\
 0 & 0 & b
\end{pmatrix}; \quad E_1(x) = \begin{pmatrix}
 0 & 0 & c \\
 0 & 0 & d \\
 c & d & 0
\end{pmatrix}.$$

The E_2 species are doubly degenerate unpolar modes while the A and E_1 species are both infrared and Raman active. The E_2 species can easily be observed separately using $x(yz)y$ scattering geometry, while the A and E_1 species in general will mix. In order to find adequate scattering geometries for separation, one will have to examine the scattering efficiencies using the well-known formula for the scattering intensity of an uniaxial piezoelectric crystal, given by LOUDON. Thus, using a phonon wave vector propagating in the xy-plane along the bisecting line of the x and y axes, the most general

$${E_1(y)} = \begin{pmatrix}
 0 & 0 & -d \\
 0 & 0 & c \\
 -d & c & 0
\end{pmatrix}; \quad {E_2(f)} = \begin{pmatrix}
 f & -f & 0 \\
 -f & f & 0 \\
 0 & 0 & 0
\end{pmatrix}.$$

* This work was partly reported at the International Conference on Raman Spectroscopy, Ottawa, August 1969, and the Conference EUCHEM, Jouy en Josas, September 1969.

Reprint requests to Dr. H. W. SCHRÖTTER, D-8000 München 13, Amalienstraße 54.

