Estimation of Electric Polarizabilities of Organic \(\pi \)-Electron Systems from Kerr Effect Measurements

A. SCHWIEG

Physikalisch-Chemisches Institut der Universität Marburg

(Z. Naturforsch. 21 a, 867–868 [1966]; received 3 May 1966)

A method to estimate the principal polarizabilities of \(\pi \)-electron clouds embedded in a continuous uniform medium of dielectric constant \(\varepsilon_0 = 2 \), is described and applied to determine these polarizabilities in the case of aromatic hydrocarbons.

It was assumed \(^1\) that the \(\pi \)-electrons of an organic molecule dissolved in a saturated hydrocarbon see the \(\sigma \)-electrons of the molecule and the \(\sigma \)-electrons of the solvent medium as a continuous uniform medium of dielectric constant \(\varepsilon_0 = 2 \), where \(\varepsilon_0 \) is the refractive index of the solvent. Therefore an aromatic or organic \(\pi \)-electron cloud may be considered approximately to be a cloud of \(\pi \)-electrons in a continuous uniform medium of dielectric constant 2. If a light beam passes through such a solution the electric field \(E \) of the light wave in the solution contains a contribution of the uniform medium \((\varepsilon_0 - 1)/\varepsilon_0 \) and a contribution due to the \(\pi \)-electron clouds of the solute molecules \(\nu_2 \lambda_0 \) where \(\nu_2 \) is the refractive index of the solution, \(\lambda_0 \) the wave-length of the light beam and \(\nu_2/b_0 = b_y/b_x \) is the ratio of the components of the molecular \(\pi \)-electronic polarizabilities to the molecular \(\pi \)-electron polarizability in the uniform \(\sigma \)-medium. Thus one obtains

\[
n_2 \lambda_0^2 - \varepsilon_0 = 4 \pi \nu_2 \lambda_0 = \frac{4 \pi}{3} \nu_2 (b_x + b_y + b_0) \quad (1)
\]

where

\[
\nu_2 = \frac{n_2}{n_1} = 1 + \frac{2}{3} \left(b_x + b_y + b_0 \right)^2
\]

If a uniform electric field \(F \) is applied to the solution \(\nu_2 \lambda_0 \) changes by \(\Delta \lambda_0 \) because of electro-striction while \(\lambda_0 \) changes by \(\Delta \lambda_0 \). Thus \(\nu_2 \lambda_0 \) changes by \(2 \nu_2 \lambda_0 \)yn. \(\Delta \lambda_0 \) can be found by differenciating (1)

\[
\Delta \lambda_0 = \frac{n_2}{n_1} \Delta \nu_2 = \frac{1}{2} \frac{\Delta \lambda_0}{\nu_2} \quad (2)
\]

The magnitudes of \(\lambda_0 \) parallel (\(|| \)) and perpendicular (\(\perp \)) to the applied field are then obtained \(^3\) to be

\[
\langle \lambda_0 || \rangle = 2 (\Theta_0 + \Theta_0) \frac{1}{2} F^2, \quad (3)
\]

\[
\langle \lambda_0 \perp \rangle = - (\Theta_0 + \Theta_0) \frac{1}{2} F^2, \quad (4)
\]

where

\[
\Theta_0 = \frac{1}{45 k T} \left[(a_x - a_0) (b_x - b_0) + (a_y - a_0) (b_y - b_0) + (a_z - a_0) (b_z - b_0) \right], \quad (5)
\]

\[
\Theta_0 = \frac{1}{45 k T} \left[(\mu_x^2 - \mu_0^2) (b_x - b_0) + (\mu_y^2 - \mu_0^2) (b_y - b_0) + (\mu_z^2 - \mu_0^2) (b_z - b_0) \right]. \quad (6)
\]

\(T \) is the absolute temperature, \(k \) the Boltzmann constant, \(a_x, a_y \) and \(a_z \) denote the principal electrostatic polarizabilities and \(\mu_x, \mu_y \) and \(\mu_z \) the components of the permanent dipole moment along the principal polarizability axes of a \(\pi \)-electron cloud in the uniform medium of dielectric constant \(\varepsilon_0 \).

As usually defined, the Kerr constant \(B_{12} \) is

\[
B_{12} = \frac{\langle \lambda_0 \perp \rangle - \langle \lambda_0 || \rangle}{\lambda \nu_2^2}, \quad (7)
\]

where \(\lambda \) is the wave-length of the light beam and \(\langle \lambda_0 \perp \rangle \) and \(\langle \lambda_0 || \rangle \) are the refractive indices of the solution parallel and perpendicular to the applied field.

By introducing Eqs. (3) and (4) into (2) one finds

\[
B_{12} = \frac{3 \pi N_\Lambda}{\lambda n_1 \nu_1 M_2} (\Theta_0 + \Theta_0) \frac{w_2}{w_3}, \quad (8)
\]

The assumption is made that \(n_2 \) and \(\nu_2 \lambda_0 \) become practically equal to \(n_1 \) and \(\nu_1 \lambda_0 \), respectively, one finally has

\[
\Theta_0 + \Theta_0 = \frac{n_1 \nu_1 \lambda_0 M_2}{3 \pi N_\Lambda} \delta. \quad (11)
\]

A. KUHN

Chimia 9, 237 [1955].

M. BORN, Ann. Physik 55, 177 [1918].

2. J. KERR, Phil. Mag. 50, 337, 446 [1875].

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:

Creative Commons Namensnennung-NoDerivs 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.
in (7), (8) and (9) B_{12} are replaced by

$$ \Delta n_{12}^* = \Delta n_{12} - \Delta n_1 \quad \text{and} \quad B_{12}^* = B_{12} - B_1,$$

where Δn_1 and B_1 refer to the solvent medium, then after equating (8) and (9) the final Eq. (11) remains unchanged.

Δ and γ were calculated in the cases of benzene, naphthalene, phenanthrene and diphenyl using the experimental data of B_{12} and n_{12} obtained in n- heptane solutions at various values of w_2. Since Θ_β is zero for non-polar molecules considered here, Θ_β may easily be evaluated from (11).

b_λ is defined arbitrarily to be the principal polarization perpendicular to the molecular plane. The electrostatic polarizabilities a_λ, a_β and a_γ are assumed to be the same as the electro-optical polarizabilities b_λ, b_β and b_γ. Thus, in (5) there remain three unknowns b_α, b_β and b_γ to be determined and to calculate this unknowns, besides (5), two further equations are required.

One further equation is supplied from (1). Introducing into this equation $v_\lambda = (N_\lambda w_2) / (M v_\pi v_\pi)$ and Eq. (10) for solutions restricted to low concentration one obtains

$$ b_\lambda + b_\beta + b_\gamma = \frac{3 M_\pi v_\pi n_1}{2 \pi N_\lambda} \gamma. \quad (12) $$

In the case of benzene the required third equation is $b_\lambda = b_\beta$ on symmetry grounds. Using the three equations described b_α and b_β were calculated to be $6.4 \pm 0.3 \, \text{Å}^3$ and $-0.2 \pm 0.7 \, \text{Å}^3$, respectively. This result confirms Coulson's\(^{10}\) assumption that the polarizability of a π-electron system perpendicular to the molecular plane is approximately zero.

To calculate the principal polarizabilities b_α and b_β of naphthalene and phenanthrene the equation $b_\gamma = 0$ was assumed to be justified by the results obtained for benzene. In the case of diphenyl meaningful results could only be obtained on the assumption that the polarizability due to the π-electrons gives rise to a component $b_\gamma \neq 0$, a result which indicates that in solution also this molecule is non-planar\(^9\).

The principal polarizabilities obtained by the method described above are given in the table. These values were compared with values obtained from quantum theory in a previous paper\(^{12}\).

<table>
<thead>
<tr>
<th>molecule</th>
<th>i</th>
<th>b_i (10$^{-24}$ cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzene</td>
<td>β</td>
<td>6</td>
</tr>
<tr>
<td>naphthalene</td>
<td>β</td>
<td>14</td>
</tr>
<tr>
<td>phenanthrene</td>
<td>β</td>
<td>25</td>
</tr>
<tr>
<td>diphenyl</td>
<td>β</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1. Estimated principal π-electron polarizabilities referred to a medium of dielectric constant 2.

Thanks are due to the Deutsche Rechenzentrum, Darmstadt for the use of the IBM 7094 and to the Deutsche Forschungsgemeinschaft for financial support.

\(^{7}\) G. Briegleb, Z. phys. Chem. B 16, 249, 276 [1932].

\(^{9}\) One may show that due to the experimental conditions chosen by Briegleb (see Ref. 5) this assumption is valid, the relations $a_{\alpha}/b_\alpha = a_{\beta}/b_\beta = a_{\gamma}/b_\gamma$ extending between the limits 0.9 and 1.1.

Rotationspektrum des Chloroforms in angeregten Schwingungszuständen

ADALBERT GOERTZ

Department of Physics, Pennsylvania State University
Mont Alto, Pa. 17237, USA

(Z. Naturforsch. 21a, 683—689 [1966]; eingegangen am 8. November 1966)

Some vibrational fine structure lines of chloroform are measured at around 66 GHz and 72 GHz. They correspond to the rotational transitions $J : 9 \rightarrow 10$, and $J : 10 \rightarrow 11$. Some rotation-vibration interaction constants ω_2 are determined, others are predicted for bromoform and methylfluoride. Electric quadrupole hyperfine structure is not resolved.

Chloroform HCCl$_3$ is das zweite Molekül\(^1\) in der Reihe der Haloforme HCX$_3$, für welches Rotations-übergänge in schwingungss angeregten Molekülen bekannt geworden sind\(^2\). Das Spectrometer war eine 1 Meter lange elektrisch aufheizbare Starkzelle (X-Band). Die Hyperfeinstruktur des Kernquadrupolmoments der drei Chlorkerne Cl3 wurde nicht aufgelöst. Bei etwa 4 mm Wellenlänge wurden folgende Absorptionsfrequenzen gemessen (ν_{π} = Schwingungsquantenzahl des i-ten Schwingungszustandes):
