Thermal Accommodation of the Helium Isotopes on Clean Tungsten Surfaces

J. KOUPTSIDIS and D. MENZEL

Eduard-Zintl-Institut, Technische Hochschule Darmstadt, Germany

(Z. Naturforsch. 24 a, 479—480 [1969]; received 6 February 1969)

Using a previously described technique to insure extreme cleanliness, the accommodation coefficients (a.c.) of the helium isotopes have been measured on clean tungsten surfaces between 77 and 373 °K. It was found that the a.c. of 3He is about 10% smaller than that of 4He above 250 °K; at lower temperatures the difference becomes smaller.

In the last years considerable effort, especially from the theoretical side, has been invested to come to a better understanding of the energy and momentum exchange which takes place upon impact of gas particles on solid surfaces. The examination of the proposed models is hampered by the fact that reliable experimental data are still scarce, which is mainly due to the very strong influence of surface contamination on these processes. We have recently described a system which makes possible the exclusion of all contamination effects in the measurements of thermal accommodation coefficients (a.c.'s) by the hot filament method. In the measurements with this system, we aim at separating as clearly as possible the influence of different parameters on the value of the a.c. It would be of interest, for instance, to show directly the influence of the mass of the impinging particle on the a.c. This cannot be found by comparing the a.c. of different atoms, e.g. the rare gases, as a number of other important parameters change from one species to the other. This can be avoided, if the a.c. of different isotopes of the same chemical species are compared, the most convenient being the helium isotopes. The a.c. of 3He and 4He have therefore been measured as a function of the temperatures of gas and surface between 77 and about 400 °K. The only measurement of this kind known to us is a preliminary result of KREUGER (reported by THOMAS), who obtained a ratio $\alpha_{^4/_{^3}} = 1.09$ at 308 °K.

The measurements have been carried out using the hot filament method, using potential leads; the results have been corrected for small errors (some percent) due to the change of the temperature distribution along the filament in vacuum and gas. The technique to obtain and control extreme cleanliness of the system and of the used rare gases, which comprises the use of a field emission microscope, isopentane, and liquid nitrogen as coolants has been described in detail previously. A thermostat using mineral oil, alcohol, isopentane, and liquid nitrogen as coolants has been used to establish a gas temperature constant to about 0.03 °K. The gases were cleaned by successive gettering as described in. Mass spectrometric analysis showed the used 3He to contain 99.6% 3He, 0.2% 4He, all other contaminants being below 0.2% (mostly hydrogen) before cleaning. The pressure measurements were made with a bakeable McLeod; care was taken to eliminate errors caused by thermal transpiration and the mercury pumping effect.

On the same filament, the reproducibility of the measurements was better than 2%. On different filaments, the measured a.c. values differed up to about 6%, probably due to errors in the measurement of the pertinent constants of the filaments, and/or to small changes of the surface exposed by the filaments, e.g. roughness, exposed crystal faces etc. Absolute variations of this magnitude are of no importance; however, they disturb the comparison of the a.c. values of the two isotopes somewhat. They could be eliminated by measuring on one filament only; yet, because of the rather high tendency of the potential leads to break during the experiments, it was necessary to combine measurements on different filaments in order to cover the complete temperature range. To eliminate the systematic deviations between filaments for the comparison, the measurements were normalized: for each filament the a.c. of 4He at 298 °K was measured first; all other measurements on it were corrected by its deviation from the mean value for 8 filaments, which was $\alpha_{^4} = 0.0167$ (in excellent agreement with 4). This lead to corrections of 0 to 5%. The results for the a.c. values of 3He and 4He obtained thus are shown in Fig. 1 as a function of the gas temperature. In agreement with findings reported before for 4He, no dependence of the a.c.'s on the temperature difference between gas and surface, ΔT, was found except at the lowest gas temperatures, where the a.c. increased slightly with ΔT; the values given for these cases were obtained by extrapolation to $\Delta T = 0$.

It is seen that the a.c. of 4He is about 10% higher than that of 3He above 250 °K, in good agreement with 2, which makes possible the exclusion of the rather high tendency of the potential leads to break during the experiments, and/or to small changes of the surface exposed by the filaments, e.g. roughness, exposed crystal faces etc. Absolute variations of this magnitude are of no importance; however, they disturb the comparison of the a.c. values of the two isotopes somewhat. They could be avoided, if the a.c. of different isotopes of the same chemical species are compared, the most convenient being the helium isotopes. The a.c. of 3He and 4He have therefore been measured as a function of the temperatures of gas and surface between 77 and about 400 °K. The only measurement of this kind known to us is a preliminary result of KREUGER (reported by THOMAS), who obtained a ratio $\alpha_{^4/_{^3}} = 1.09$ at 308 °K.

The measurements have been carried out using the hot filament method, using potential leads; the results have been corrected for small errors (some percent) due to the change of the temperature distribution along the filament in vacuum and gas. The technique to obtain and control extreme cleanliness of the system and of the used rare gases, which comprises the use of a field emission microscope, isopentane, and liquid nitrogen as coolants has been described in detail previously. A thermostat using mineral oil, alcohol, isopentane, and liquid nitrogen as coolants has been used to establish a gas temperature constant to about 0.03 °K. The gases were cleaned by successive gettering as described in. Mass spectrometric analysis showed the used 3He to contain 99.6% 3He, 0.2% 4He, all other contaminants being below 0.2% (mostly hydrogen) before cleaning. The pressure measurements were made with a bakeable McLeod; care was taken to eliminate errors caused by thermal transpiration and the mercury pumping effect.

On the same filament, the reproducibility of the measurements was better than 2%. On different filaments, the measured a.c. values differed up to about 6%, probably due to errors in the measurement of the pertinent constants of the filaments, and/or to small changes of the surface exposed by the filaments, e.g. roughness, exposed crystal faces etc. Absolute variations of this magnitude are of no importance; however, they disturb the comparison of the a.c. values of the two isotopes somewhat. They could be eliminated by measuring on one filament only; yet, because of the rather high tendency of the potential leads to break during the experiments, it was necessary to combine measurements on different filaments in order to cover the complete temperature range. To eliminate the systematic deviations between filaments for the comparison, the measurements were normalized: for each filament the a.c. of 4He at 298 °K was measured first; all other measurements on it were corrected by its deviation from the mean value for 8 filaments, which was $\alpha_{^4} = 0.0167$ (in excellent agreement with 4). This lead to corrections of 0 to 5%. The results for the a.c. values of 3He and 4He obtained thus are shown in Fig. 1 as a function of the gas temperature. In agreement with findings reported before for 4He, no dependence of

3 L. B. THOMAS, p. 162 of 1.
the difference diminishes to lower temperatures. As the latter finding was unexpected, and in order to exclude the possibility of this finding being caused by errors, a very careful comparison was made of the a.c.'s of the two isotopes on the same surface at 298 and at 77 °K: at each temperature, three independent runs for each gas were made, each consisting of 10 measurements at different ∆T-values; the final value was found by extrapolation to ∆T = 0. The utmost care was taken to use identical procedures, so that all systematic errors would cancel in the comparison. Table 1 shows the results. It is seen that the results of Fig. 1 are confirmed. As the possible relative error is estimated to be about 1%, it is concluded that the a. c. of ⁴He is larger than that of ³He by 8 to 12% at 298 °K, and by 1 to 5% at 77 °K. The difference in these ratios is well outside the experimental error.

<table>
<thead>
<tr>
<th>T (°K)</th>
<th>x_4</th>
<th>x_3</th>
<th>γ = 100(x_4/x_3 - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>0.0167</td>
<td>0.0153</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>0.0170</td>
<td>0.0154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0169</td>
<td>0.0153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0133</td>
<td>0.0127</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.0133</td>
<td>0.0129</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>0.0130</td>
<td>0.0128</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Comparison of the a.c. values of ⁴He and ³He on the same W surface at 77 and 298 °K.

A first comparison with existing theories shows the following: The simple theory of Baule⁶ which is based on collisions of isolated hard spheres leads to

$$x \sim m$$ for $m \ll M$

(m: mass of gas atom; M mass of isolated metal atom); Baule's result is identical with the so-called "high temperature" or "hard spheres" limit of several treatments⁷⁻⁸. This prediction is disproven by the experimental result. An even stronger contradiction is found with the result of Landau's⁹ continuum theory: $x \sim 1/\sqrt{m}$, which even predicts the wrong direction of the change. The theory of Trilling¹⁰ postulates a dependence $x \sim \sqrt{m}$ for $m \ll M$, independent of temperature, i.e.

$$\gamma = 100(x_4/x_3 - 1) = 15.5\%.$$ which is not far from the value measured for $T > 250°K$. Goodman and Wachman¹¹ made a prediction for the a. c.'s of the helium isotopes using a semiempirical formula based on Goodman's classical lattice theory. From their Fig. 8 a value of γ of about 11.5%, practically independent of temperature, is derived. This is in excellent agreement with the measured value for $T > 250°K$, while the decrease of γ with decreasing temperature remains unexplained. (The shape of the temperature dependence of the a. c.'s predicted in¹¹ is somewhat different from our results, especially above 250°K, but this is considered not too significant, as by a small adjustment of the constants used in the formula of¹¹ agreement with our results could probably be obtained).

An explanation of the change of γ with decreasing temperature will be attempted in a forthcoming publication.

Financial support by the Deutsche Forschungsgemeinschaft and the Fond der Chemischen Industrie is gratefully acknowledged.

¹⁰ L. Trilling, p. 139 of ¹.