The single crystals have been grown from saturated aqueous solutions at 45°C by slow evaporation of the water. Most of the crystals produced by this method were fairly imperfect. This could be seen by the deviations from optical flatness of the crystal surfaces, these deviations having magnitudes of up to one degree. But it was possible to obtain a few perfect specimens of a size of about 1 cm3.

With such a crystal the 23Na- and 127I-NMR spectrum has been investigated as a function of the angle θ between the magnetic field H_0 and the [001]-axis, the crystal being rotated about the [010]-axis. In agreement with the crystal structure of NaIO$_4$ ($\text{space group } C_{4v}^{1} - I4_1/a$, point symmetry of Na: 4, point symmetry of I: 4) the following results have been obtained by a least-squares fit of the experimental curve with the function

$$e^2 q Q(3 \cos^2 \theta - 1 + \eta \sin^2 \theta)/2h$$

(magnetic field $H_0 = 9.34$ kOe corresponding to $r_{\text{Larmor}} = 10.516$ and 7.855 MHz for 23Na and 127I, respectively; temperature $23 \pm 2^\circ$C).

![Fig. 1. Angular dependence of the quadrupole splitting $\Delta \nu$ of 23Na in NaIO$_4$.](image)

- **$\Delta \nu = \nu' - \nu''$**
- ν' and ν'' are the central-line frequency and the satellite frequencies, respectively.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- $\Delta \nu$ is the frequency difference between the satellites.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
- $\Delta \nu$ is the frequency splitting.
- η is the asymmetry parameter.
- Q is the quadrupole coupling constant.
- h is the Planck's constant.
- θ is the angle between the [001]-axis and the magnetic field H_0.
Since there is no correlation between these intensity effects and the angular dependence of the resonance frequencies (a similar maximum in intensity for the 23Na lines should occur at $\theta = 0^\circ$ and 180°), the explanation by angular line broadening (mosaic structure) is not possible. This leads us to the supposition that our observation is due to relaxation effects. This observation proves also that one has sometimes to be careful in the interpretation of NMR spectra of powders where it is tacitly assumed that all crystal orientations have the same weight for the averaging.

The obtained value of $e^2q Q/h$ for 23Na in NaIO$_4$ is much smaller than the corresponding values in NaBF$_4$ (1008.4 ± 1.2 kHz1) and NaClO$_4$ (836 ± 20 kHz4), a fact which is certainly connected with η in NaIO$_4$ being zero (NaBF$_4$: $\eta = 0.095 \pm 0.003$), NaClO$_4$: $\eta \leq 0.1^5$). The value of $e^2q Q/h$ for 127I in NaIO$_4$ must be very large (it should be comparable to $e^2q Q/h$ of Re in KReO$_4$5), showing that the ionic charge distribution in the crystal produces only a minor part of the electrical field gradient at the 127I-site. The greatest part must be produced by the distortion of the ideally tetrahedral arrangement of the I-O bonds by the surroundings in the crystal.

Fig. 2. Angular dependence of the frequency v_c of the central resonance line $m = 1/2 \rightarrow -1/2$ of 127I in NaIO$_4$. $H_0 = 9.34$ kOe. Orientation as in Fig. 1.
