A New Method for the Calculation of Correlated Pair Functions

LEVENTE SZASZ, GEORGE MCGINN, and JOHN SCHROEDER
Department of Physics, Fordham University, New York, N.Y. 10458
(Z. Naturforsch. 22 a, 2109 — 2110 [1967]; received 25 October 1967)

A method for the calculation of correlated pair functions was first developed by Fock, Wesselow, and Petrashev, and more recently several other methods had been developed. All these methods have in common the feature that the correlated pair function is the solution of an equation of the form $H_{12} \Phi = E \Phi$ where H_{12} is a two-electron Hamiltonian and Φ must be strongly orthogonal to the one-electron spin orbitals. The orthogonality requirement is the source of extreme mathematical difficulties. If Φ_0 is a function not orthogonal to the one-electron orbitals, it is orthogonized with the operator $(1 - \Omega_{12})$ which is a two-electron, integral, projection operator. Consequently if Φ_0 contains τ_{12}, the interelectronic distance, the application of H_{12} and $(1 - \Omega_{12})$ to Φ_0 will result in integrals containing the combinations $(\tau_{12} \tau_{23})$, $(\tau_{12} \tau_{13} \tau_{14})$, and $(\tau_{12} \tau_{23} \tau_{34})$. The calculation of such integrals is extremely time consuming for atoms and quite impossible for molecules.

We report that we developed a method in which this difficulty is avoided. Consider an atom with N electrons in closed shells plus two valence electrons. The total wave function is $\psi = (N + 2)^{-N/2} A \{ \varphi_1 \varphi_2 \ldots \varphi_N \Phi \}$ where A is an antisymmetrizer, $\varphi_1 \ldots \varphi_N$ are the core functions, and Φ is the correlated two-electron function for the valence electrons. Φ is strongly orthogonal to the φ_i's. The energy expression has the form

$$E_T = \langle \Phi | H_T (1) + H_T (2) + \tau_{12} \rangle | \Phi \rangle + E_c,$$

where H_T is the Hartree–Fock (H–F) Hamiltonian of the core and E_c is the (H–F) energy of the core. We put

$$\Phi = \varphi_A (1) \varphi_B (2),$$

(In order to make the result simple we do not antisymmetrize Φ. This deficiency can be corrected later.) Application of the energy minimum principle leads to the equations

$$(H_T + V_A) \varphi_A = E_A \varphi_A,$$

and

$$(H_T + V_A) \varphi_B = E_B \varphi_B,$$

where V_A and V_B are the potentials resulting from φ_A and φ_B. Putting φ_A and φ_B in the Schmidt-orthogonalized form we get

$$(H_T + V_A) \varphi_A = E_A \varphi_A,$$

and a similar equation for φ_B. In (1) φ_0^A is the pseudowave function defined by

$$\varphi_A = N_A (\varphi_0^A - \Sigma C_i \varphi_i),$$

where

$$C_i = \langle \varphi_A | \varphi_0^A \rangle.$$

E_i is the (H–F) core orbital parameter, and N_A is a normalization constant. There is a similar formula for φ_B. We solve the equations for φ_0^A and φ_0^B and obtain E_A and E_B. Then using (1) and the equations defining φ_0^A and φ_0^B we eliminate φ_A and φ_B from the energy expression. By putting $\Phi_0 = \varphi_0^A \varphi_0^B$ and using the energy minimum principle we obtain the equation for Φ_0 in the form

$$H_{12}^M \Phi_0 = E \Phi_0,$$

where Φ_0 is not orthogonal to the core functions and H_{12}^M the modified Hamiltonian has the form:

$$H_{12}^M = H_T (1) + H_T (2) + (N_A^2 + N_B^2 - N_A^2 N_B^2) \tau_{12} + \sum_{i \neq C_i} (E_A - E_i - (N_A^2 - 2 N_A N_B + N_B^2) V_{AA} (1) \varphi_i (1) / \varphi_0^A (1)$$

$$+ \sum_{i \neq C_i} (E_B - E_i - (2 N_B^2 - 2 N_A N_B + N_A^2) V_{BB} (2) \varphi_i (2) / \varphi_0^B (2)$$

$$+ [N_A - N_A N_B] \sum_{i \neq C_i} (C_i^A C_i^B V_{AB} (1) + 2 C_i^A C_i^B V_{AB} (2) \varphi_i (1) / \varphi_0^A (1)$$

$$+ [N_B - N_A N_B] \sum_{i \neq C_i} (C_i^A C_i^B V_{AB} (2) + 2 C_i^A C_i^B V_{AB} (1) \varphi_i (2) / \varphi_0^B (2))$$

5 L. Szasz and J. Byrne, Phys. Rev. 158, 34 [1967].
where

\[V_{ab}(i) = \int \left(\varphi^\ast_a(j) \varphi_b(j) \right) \frac{1}{\tau_{ij}} \, dv_j. \]

This Hamiltonian is exact (apart from exchange terms which can be included later) if \(\Phi_0 \) is the product of one-electron pseudo-wave functions. We suggest that the equation \(H^M_{12} \Phi_0 = E \Phi_0 \) is a good approximation also if \(\Phi_0 \) is a correlated pair function. This assumption is strongly supported by the following argument. The operator \(H^M_{12} \) is derived in such a way that the orthogonality projection operator \((1 - \Omega_{12}) \) is transformed into pseudopotentials. But we orthogonalize correlated and uncorrelated two-electron functions with the same operator; i.e. \((1 - \Omega_{12}) \) is the same regardless whether it operates on a correlated or uncorrelated function.

By transforming \((1 - \Omega_{12}) \) we have eliminated the troublesome integrals from the calculations. By solving

\[H^M_{12} \Phi_0 = E \Phi_0 \]

variationally we can put \(\Phi_0 \) in a HYLLERAAS form and only two-electron integrals will occur since all terms in \(H^M_{12} \) have the character of potentials.

The method is developed here for the two valence electrons of an atom. Generalization for an arbitrary electron pair is straightforward. The wave function will be the same again with \(\Phi \) representing any electron pair. The derivation of \(H^M_{12} \) will follow the same steps but the equations for \(\varphi_A \) and \(\varphi_B \) will be different and therefore also \(H^M_{12} \) will be slightly different.

As a first, demonstrative calculation we computed a correlated pair function for the \((2s)\) shell of the Be atom. Since the pseudo-wave functions are not available for the Be (2s) electrons we used the pseudo-wave function for the \((2s)\) electron of Be\(^{++}\) ion. It can be shown that the pseudopotentials are not sensitive to small changes in the pseudo-wave function. Using a 6 term HYLLERAAS type function with a Slater function as the leading term we obtained a correlation energy of \(E_c = -0.0302 \) a.u. By carrying out the orthogonalization explicitly one obtains with the same ansatz \(E_c = -0.0321 \) a.u. The agreement is very good; the small difference is probably a result of using Be\(^{++}\) pseudopotentials instead of the correct ones for Be.

The work is being continued and the results will be presented in forthcoming publications.

Proton Spin Relaxation in Paramagnetic Ion Solutions: Deuterium Isotope Effect

V. L. Pollak and R. R. Slatter

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

(Z. Naturforsch. 22 a, 2110—2111 [1967]; received 12 August 1967)

In aqueous paramagnetic ion solutions the observed rate of proton spin relaxation \((1/T_2) \) is controlled by the rate of relaxation in the primary hydration shell of the paramagnetic ion \((1/T_{2z}) \), and by the rate of proton exchange between the hydration shell and the solvent. The relaxation rate is given by

\[1/T_2 = P(T_{2z} + \tau_{xw})^{-1}, \tag{1} \]

where \(P \) is the fraction of protons in hydration shells, and \(\tau_{xw} \) is the mean lifetime of a proton in the hydration shell. The effects of isotopic substitution have been studied by measurement of deuteron spin relaxation in \(\text{D}_2\text{O} \) solutions, and of proton and deuteron relaxation in solutions of mixed isotopic composition. The present discussion will apply to cases like \(\text{Cr}^{++} \) and \(\text{VO}^{++} \), where the dominant exchange mechanism is proton transfer across hydrogen bonds, rather than exchange of whole water molecules. We seek to account for changes in the \(T_2 \) of protons (and deuterons) with variation in the isotopic composition of the solution, as have been observed by Mazitov and Rivkind and by Phillips and Kleinmann.

If the solution contains a mixture of the isotopes \(\text{H} \) and \(\text{D} \), and the factor \(P \) in Eq. (1) is given by

\[P = (n x/w) (\beta_x/\beta_w), \tag{2} \]

where \(n \) is the hydration number, \(x \) is the paramagnetic ion concentration, \(w \) is the concentration of water molecules, and \(\beta \) is the fractional concentration of protons — i.e., \(\beta_x = H_x/(H_x + D_x) \), and \(\beta_w = H_w/(H_w + D_w) \). Due to the difference in zero-point vibrational energy, the chemical rate constants for \(\text{H} \) and \(\text{D} \) exchange dif-
