Second Derivatives of the Hartree–Fock–Roothaan Hamiltonian

A. Azman
King’s College, Cambridge, England
and Z. Bohle
University of Surrey, London

(Z. Naturforsch. 22 a, 1131 [1967]; received 28 April 1967)

In this note we should like to present the second derivatives of the Hartree–Fock–Roothaan Hamiltonian that could be useful in ab-initio calculations of the force constants. We shall use a method similar to that of Rossinkhīn and Morozov ¹ but extended to polyatomic molecules.

Energy E can be written ² as

$$E = 2 \int \left(\sum \varphi_i(q) \varphi_i(q') \right) \, dq \, dq'$$

where h is the one-electron operator and φ is the density matrix. Using the fact that $\varphi_i(q)$ form a complete set of eigenfunctions of the Hartree–Fock–Roothaan operator, the first derivatives are easily found as

$$\frac{\partial \varphi_i(q)}{\partial R_n} = \sum_j K_n^{ij} \varphi_j(q)$$

where the matrix K_n is antisymmetric ($K_n^{ij} = -K_n^{ji}$) and R_n is the coordinate. In addition it may be shown that

$$\frac{\partial^2 \varphi_i(q,q')}{\partial R_n \partial R_m} = 0 \quad \text{and} \quad \frac{\partial^2 \varphi_i(q,q')}{\partial R_n \partial R_m} = 0.$$

¹ V. V. Rossinkhīn and V. P. Morozov, Theor. Eksp. Khim. 4, 528 [1966]. (Russ.)

² R. McWeeny, Rev. Mod. Phys. 32, 335 [1960].

³ C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 [1951].

On the Analysis of Triple Correlations in Radiative Capture Reactions

A. A. Kresnīn * and V. E. Storizheko *
Atomic Energy Establishment, Cairo, Egypt, U.A.R.

(Z. Naturforsch. 22 a, 1131—1132 [1967]; received 2 May 1967)

Attention is given to the advantages of applying a geometry where the primary γ-quantum is detected in the beam direc-

* On leave from Physico-Technical Institute, Kharkov, USSR.

Therefore, the second derivatives of the energy are

$$\frac{\partial^2 E}{\partial R_n \partial R_m} = 2 \int \left(\sum_{i=1}^{3} \frac{\partial^2 \varphi_i(q)}{\partial R_n \partial R_m} \varphi_i(q) \right) \, dq$$

With the Roothaan’s approximation ³ $\varphi_i = \sum_p C_{ip} \tilde{\varphi}_p$ where $\tilde{\varphi}_p$ form a complete set of the orthonormalized atomic orbitals, the energy is

$$E = \sum_{i,p} C_{ip} (H_{ps} + F_{ps}) C_{is}$$

$$= \text{Tr} (C (H + F) CT) - \text{Tr} (C M CT).$$

The first derivatives of E are

$$\frac{\partial E}{\partial R_n} = \text{Tr} \left(\frac{3C}{3R_n} M CT + \frac{3M}{3R_n} CT + \frac{3CT}{3R_n} \right).$$

Derivatives of the matrix C can be found using

$$\frac{\partial^2 \varphi_i}{\partial R_n} = \sum_p \left(\frac{\partial C_{ip}}{\partial R_n} \tilde{\varphi}_p + C_{ip} \frac{\partial \tilde{\varphi}_p}{\partial R_n} \right) = \sum_p K_n^{ip} \tilde{\varphi}_p.$$

Denoting

$$\frac{\partial \tilde{\varphi}_p}{\partial R_n} = G_{np} \tilde{\varphi}_s,$$

we obtain

$$\frac{\partial E}{\partial R_n} = K_n^a C - C G^a.$$

Since the matrices K_n^a and G^a are antisymmetric we have

$$\frac{\partial E}{\partial R_n} = \text{Tr} \left(\frac{3C}{3R_n} M CT \right)$$

as $\text{Tr} (AB - BA) = 0$, and $\text{Tr} (CACT) = Tr A$ provided $CT C = 1$. By the same argument we get

$$\frac{\partial^2 E}{\partial R_n \partial R_m} = \text{Tr} \left(\frac{3C}{3R_n} M CT \right).$$

This expression is, because of using orthonormalized atomic orbitals, simpler as the one derived by Rossinkhīn and Morozov for diatomic molecules.

¹ On leave from Physico-Technical Institute, Kharkov, USSR.

² R. McWeeny, Rev. Mod. Phys. 32, 335 [1960].

³ C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 [1951].

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition “no derivative works”). This is to allow reuse in the area of future scientific usage.
The theory of triple correlations for the case of isolated resonances has been developed by several authors (l. c. 3, 4). However, its direct application for the case of overlapping resonances is associated with many difficulties. LITHERLAND and FERGUSON 4 suggested a method of analysis in which the stage of formation of the decaying state is eliminated from consideration. This method considers population parameters of magnetic substates (statistic tensor parameters) describing the alignment of a decaying state as the parameters which are to be determined from the analysis of experimental data. In a general case, the analysis of triple correlations in radiative capture reactions \(X(x, \gamma \gamma) \) requires the determination of many parameters and, consequently, measurements for a number of geometries. Usually, the correlations are measured in geometries I, II, VI, VII (the notation of LITHERLAND and FERGUSON 4) and angular distributions of \(\gamma \)-quantas are measured as well.

The purpose of this letter is to emphasize the advantages of applying the rarely used geometry IV, where the first \(\gamma \)-quantum is detected along the direction of an incident particle beam. In fact, in this case one may apply the method suggested by LITHERLAND and FERGUSON 4 for the analysis of triple correlations in \(X(a, b \gamma) \) reactions.

In the considered case of the \(X(x, \gamma \gamma)) Y \) reactions (Fig. 1) owing to axial symmetry of the problem and equality to zero of the projection of orbital momentum on the direction of particle motion, the spin projections on beam direction are related as follows:

\[
m_b = m_x + m_\gamma + 1
\]
(1)

and the population of magnetic substates is symmetric between positive and negative values. Thus, the analysis of experimental data would require, in the general case, the determination of one mixing parameter and not more than \(m_b \) population parameters. In practical cases of proton, neutron or \(\alpha \)-particle radiative capture by nuclei with spin 0 or 1/2, the determination of two parameters only (one mixing parameter and one population parameter) would be necessary.

A virtual calculation of angular correlations may be performed using the expression:

\[
\hat{W}(\theta) = \sum_K Q_K \langle S_b | F_K (S_b, S_\gamma) | P_K (\cos \theta) Q_K \rangle \]
(2)

where \(Q_K \) are the attenuation coefficients and where the values for the statistical tensors \(g_K \) and \(F_K \)-coefficients are tabulated in ref. 5. Formula (2) may easily be generalized for the case of unobserved intermediate \(\gamma \)-radiations 6.

In the case when the state \(\alpha \) has a well defined spin and parity, and a mixing parameter \(\delta_1 \) of the primary \(\gamma \)-radiation is known, the population parameter of the state \(\beta \) can be directly determined from the formula:

\[
P_{m_b}(S_b) = \sum_{m_a = m_a = \pm 1} P_{m_a}(S_a) (1 + \delta_1^2)^{-1} \times \left[(L_1 m_a + m_b, S_b - m_b | S_a m_a) \right]^2 + \delta_1^2 (L_1 m_a + m_b, S_b - m_b | S_a m_a) \]
(3)

The difference between formula (3) and the analogous one given in ref. 6 is that the summation in (3) is limited by the values \(m_a + m_b = \pm 1 \) associated with the necessity of taking into account the \(\gamma \)-quantum transversality in the geometry considered.

The analysis of two available measurements 7, 8 on \((p, \gamma \gamma) \) correlations in geometry IV has given values of the mixing parameters in agreement with those previously obtained.

The described method, apart from its obvious simplicity may readily be applied to practically all the reactions of radiative capture, whereas the use of the method suggested by LITHERLAND and FERGUSON is rather limited. Another attractive feature of the considered method is that the decaying state should not necessarily be a state with well defined spin and parity.

In practice this means that correlation measurements may be performed with thick targets which is important for the investigation of the radiative capture reactions on medium and heavy nuclei, where the level density is high and the reaction cross-sections are small.

The authors would like to thank Prof. M. E. H. EL-NADI for his interest in the work and the UAR, A.E.E. authorities for their hospitality.

3 L. C. BIEDENHARM and M. E. ROSE, Rev. Mod. Phys. 25, 729 [1953].